

March 6, 2025

Mr. Joseph Shirley Operations Manager O'Hare Terminal 5 10000 West O'Hare Dr. Chicago, IL 60666

Subject: T2 Airfield Potable Water Biological & Water Screening Results

Dear Mr. Shirley,

Recently, three (3) potable waters were sampled to test for microbiological levels and general water screening chemistry. Potable water piping & equipment can harbor microbiology of public health concern. To address these concerns, the EPA has created the National Primary Drinking Water Regulations, which are attached for your reference. Additionally, there are standards for controlling Legionellosis written by multiple industry organizations and there are OSHA regulations regarding the presence of *Legionella* bacteria; including action levels and appropriate responses for bacteria counts at or above 10 CFU/ml and EPA's MCL goal of zero.

The test results performed on the potable water samples collected are attached for your review, which include the following list.

- WATER SCREENING ANALYSES 40+ Properties, Cations, Anions
- (including Turbidity & Conductivity)
- FREE CHLORINE ANALYSES
- *LEGIONELLA* BACTERIA ANALYSES
- HETEROTROPHIC AEROBIC BACTERIA COLONY PLATE COUNT at 72 F (22C)
- HETEROTROPHIC AEROBIC BACTERIA COLONY PLATE COUNT at 99 F (37C)
- HETEROTROPHIC ANAEROBIC BACTERIA COLONY PLATE COUNT
- PSEUDOMONAS AERUGINOSA ANALYSES
- COLIFORMS (TOTAL COLIFORMS) ANALYSES
- ESCHERICHIA COLI (E COLI) ANALYSES
- ENTEROCOCCI (FEACAL STREPTOCOCCI) ANALYSES

Please review the test result reports that are attached and compare them to your requirements.

Where Water Works.

These parameters below form the basis of some of your requirements, based on IATAmandated parameters, OSHA & EPA's National Primary Drinking Water Regulations...

PARAMETERS	LINE# ON REPORT	LIMITS
рН	11	6.5 to 9.5
Barium	19	< 2 ppm
Chromium	21	< 0.1 ppm
Copper	22	< 1.3 ppm
Lead	24	< 0.015 ppm
Fluoride	40	< 4 ppm
Nitrate as N	44	< 10 ppm
Nitrite as N	45	< 1 ppm
Heterotrophic Aerobic Bacteria	72	< 500 CFU/mL
Colony Plate Count At 72 F (22c)		
Heterotrophic Aerobic Bacteria	73	< 100 CFU/mL IATA; < 500 CFU /
Colony Plate Count At 99 F (37c)		mL EPA
Heterotrophic Anaerobic Bacteria	74	< 500 CFU/mL
Colony Plate Count		
Coliforms (Total Coliforms)	80	<5% of samples/One sample Max.
Escherichia Coli (E Coli)	82	< 1 CFU/mL
Enterococci (Feacal Streptococci)	83	< 1 CFU/mL
Pseudomonas Aeruginosa	84	< 100 CFU/mL
Turbidity	88	< 1 NTU
Free Chlorine as CL ₂	94	0.3 to 0.8 ppm; 4ppm Max.
Lagionalla Pactoria	-	< 10 CFU/mL OSHA; No limit
Legionella Dacteria		EPA; Zero Public Health Goal EPA

<u>RESULTS</u>

Based on the Regulations & Guidelines, the water levels tested are all within limits or under the Maximum Contaminant Level (MCL). These systems are considered to have effective water system conditions and maintenance.

Thank you for the opportunity to be of service. If you have any questions, please contact me at your earliest convenience.

Sincerely,

HOH WATER TECHNOLOGY, INC.

Faul A. Boblak

Paul A. Boblak, Lead Water Quality Engineer, CWT

DATE:	3/3/2025
TO:	Paul Boblak
FROM:	Andrew Adamsky
SUBJECT:	CATCO O'Hare International Airport, Terminal 2 Chicago, IL Analysis of domestic waters.

Dear Paul:

Attached you will find our laboratory analysis reports pertaining to the above referenced samples our laboratory number 60876.

I hope this information satisfies your requirements. If any further work or discussion is needed, please get back to me.

Very truly yours, *Andrew Adamsky* Andrew Adamsky

AA Enclosure

Where Water Works.. hohwatertechnology.com | 0 (800) 577-2211

				LA	BORAT	ORY RE	PORT -	WATER	ANALYS	SIS	Customer	· No.:	1005393
				Regarding:	Regarding: CATCO						Report No.:		60876
H	-1	WATER		Location: O'Hare International Airport, Terminal 2						Report Date:		3/3/25	
		TECHNO	LOGY		Chicago	, IL					Login Date:		2/25/25
		Т		Sample Date:)ate:	1/27/25		
50		outh Vormont Street									1		
P	alatii	ne II 60067											
(8)	00)	577-2211		G	2	E	15	E1	17				
F	ax: ()	847) 358-7082											
	<i>.</i> (011)0001002		Soluble	Insoluble	Soluble	Insoluble	Soluble	Insoluble	Soluble	Insoluble	Soluble	Insoluble
	1.	Alkalinity ("P")	as CaCO ₃	0		0		0					
	2	Alkalinity ("M")	as CaCO ₂	118		114		119					
	3	Alkalinity ("OH") (calculated)	as CaCO ₂										
w	4	Free Mineral Acidity	as CaCO ₂										
а	5	Chemical Oxygen Deman		6		3		1					
t	6.	Chloroform Extractables	- ()			-							
е	7.	Dissolved Solids		208		209		209					
r	8.	Hardness (Calcium)	as CaCO ₃	98		100		97					
	9.	Hardness (Magnesium)	as CaCO ₃	51		52		52					
Р	10.	Hardness (Total)	as CaCO ₂	149		152		149			i		
r	11.	pH	3	7.8		7.8		7.9					
	12.	Refractive Index						-					
0	13.	Specific Conductance	µmhos/cm	317		317		317					
р	14.	Specific Gravity	g/ml										
е	15.	Suspended Solids			0.0		0.5		0.5				
	16.	Total Inorganic Carbon											
	17.	I total Organic Carbon		-									
r	18.	Aluminum	as Al	0.01		0.00		0.00					
t	19.	Barium	as Ba	0.02		0.02		0.02					
i	20.	Calcium	as Ca	39.2		39.9		38.9					
е	` 21.	Chromium	as Cr	0.00		0.00		0.00					
s	22.	Copper	as Cu	0.18		0.00		0.00					
	23.	Iron	as Fe	0.01		0.01		0.01					
	24.	Lead	as Pb	0.000		0.000		0.000					
	25.	Lithium	as Li	0.00		0.00		0.00					
	26.	Magnesium	as Mg	12.4		12.6		12.6					
	27.	Manganese	as Mn	0.00		0.00		0.00					
	28.	Nickel	as Ni	0.00		0.00		0.00					
	29.	Potassium	as K	1.53		1.54		1.54					
	30.	Silver	as Ag	0.00		0.00		0.00					
С	31.	Sodium	as Na	9.10		9.16		9.18					
a t	32.	Strontium	as Sr	0.14		0.14		0.14					
i	33.	Zinc	as Zn	0.01		0.14		0.13					
0	34.	Total Cation Millequivalent	ts	3.263		3.309		3.264					
n	35.	Acetate	as C ₂ H ₃ O ₂	0.00		0.00		0.00					
s	36.	Bromide	as Br	0.00		0.00		0.00					
	37.	Chloride	as Cl	15.9		16.1		16.1					
	38.	Chlorate	as CIO ₃	0.03		0.00		0.00					
	39.		as CrO ₄										
	40.		as F	0.78		0.75		0.76					
	41.	Formate	as CHO ₂	0.04		0.02		0.03					
	42.	Glycolate	as C ₂ H ₃ O ₃	0.00		0.00		0.00					
	43.	Molybdate	as MoO ₄	0.00		0.00		0.00					
	44.	Nitrate	as NO ₃	1.20		1.20		1.21					
	45.	Nitrite	as NO ₂	0.00		0.00		0.00					
	46.	Oxalate	as C ₂ O ₄	0.00		0.00		0.00					
	47.	Phosphate (ortho)	as PO ₄	1.29		1.17		0.95			Į		
,	48.	Phosphorus (total)	as P	0.64		0.63		0.61					
A n	49.	Propionate	as C ₃ H ₅ O ₂	0.00		0.00		0.00					
i	50.	Sultamate	as IN⊓2SU3	0.00		0.00		0.00					
o	51.	Sulfate	as SO ₄	26.9		26.6		26.7			-		
n	52.	Sulfur (total)	as S	9.43		9.56		9.34					
S	53.	1 I otal Anion Millequivalent	S	3.515		3.448		3.544					
	54.	Ammonia	as NH ₃										
	55.	Benzotriazole	as C ₆ H ₅ N ₃										
	56.	Boron	as B	0.00		0.00		0.00					
	57.	Silica	as SiO ₂	2.35		2.35		2.30					
	58.	Sodium Nitrite	as NaNO ₂										
	59.	Sodium Sulfite	as Na ₂ SO ₃										
	60.		as C ₇ H ₇ N ₃				optinued cr		0				
ays	LCT	THE MARK CALCENT DO 11 DAILS DEF MILLION OF AS	mulcaldu				munitied on	LIEVELSE SIA	-				

				LA	BORAT	ORY RE	PORT - V	WATER	ANALYS	SIS	Custome	r No.:	1005393	
L		WATER		Regarding: CATCO							Report No.:		60876	
	TECHNOLOGY			Location: O'Hare International Airport, Terminal 2							Report Date:		3/3/25	
		U 24		Chicago, II							Login Date:		2/25/25	
					omougo,						Sample F	lo. Dato:	1/27/25	
													1/21/25	
50	00 S	outh Vermont Street												
Pa	alatir	ne, IL 60067		G	32	E	15	E	17					
(8	00) :	577-2211			-									
Fa	ax: (8	847) 358-7082									1			
		1		Soluble	Insoluble	Soluble	Insoluble	Soluble	Insoluble	Soluble	Insoluble	Soluble	Insoluble	
	61.	Bromate	as BrO ₃											
С	62.	Chlorite	as CIO ₂											
0	63.	Cyclohexylamine*	as C ₆ H ₁₃ N											
m	64.	Diethylamine*	as C ₄ H ₁₁ N											
p o	65.	Diethylaminoethanol*	as C ₆ H ₁₅ NO											
u	66.	Ethylamine*	as C ₂ H ₇ N											
n	67.	Morpholine*	as C_4H_9NO											
d	68.	Diethylene Glycol*	% by volume	2										
s	69.	Ethylene Glycol*	% by volume	2										
	70.	Propylene Glycol*	% by volume	2										
	71.	Methanol*	% by volume											
М		Heterotrophic Plate Count												
i	72.	@ 22°C(Aerobic)	CFU/ml	ND		ND		4						
C		Heterotrophic Plate Count												
r	73.	@ 37°C(Aerobic)	CFU/ml	ND		ND		ND						
b		Heterotrophic Plate Count	0511/											
i	74.	(Anaerobic)	CFU/ml	ND		ND		ND						
0	75.	Denitrifving Bacteria	CFU/ml											
1	76.	Fecal Coliform	CFU/100 ml											
0	77.	Iron Bacteria	CFU/ml											
g i	78	Mold	CFU/ml											
c	79	Sulfate Reducers	CEU/ml											
а	80	Total Coliform	CFU/100 ml	-1		_1		_1						
1	00.	Vooot	CEU/ml					~ `						
	01.	E Coli	CFU/100 ml	-1		-1		-1						
	02.		CF0/100 III	<1		<1		<1						
			MPN/100 ml	<1		<1		<1						
-	83.													
	84.	Pseudomonas Aeruginosa	MPN/100 ml	<1		<1		<1						
	85.	Residue by Evaporation												
	86.	Volatile Solids												
	87.	System Capacity	gal.											
	88.	Turbidity	NTU	0.11		0.12		0.15						
	89.	P.T.S.A.	ppb											
	90.	Dissolved Oxygen	as O ₂											
	91.	DEHA	ppb											
	92.	Erythorbic Acid	ppb											
	93.	Fluorescein	ppb											
	94.	Chlorine (free)	as Cl ₂	0.45		0.75		0.80						
	95.	Sulfide	as S ⁻²											
	96.	Arsenic	as As											
	97.	Mercury	as Hg											
	98.	Nitrate-Nitrite Nitrogen	as N											
	99.	Nitrate Nitrogen	as N											
	100.	Nitrite Nitrogen	as N											
	101.	Phosphonate												
	ĺ													
	1	1									1		()	

LEH All data except pH in parts per million or as indicated

Analyst

*Analysis by Gas Chromatography.

National Primary Drinking Water Regulations

Contaminant	MCL or TT ¹ (mg/L) ²	Potential health effects from long-term ³ exposure above the MCL	Common sources of contaminant in drinking water	Public Health Goal (mg/L) ²
Acrylamide	TT ⁴	Nervous system or blood problems; increased risk of cancer	Added to water during sewage/ wastewater treatment	zero
Alachlor	0.002	Eye, liver, kidney, or spleen problems; anemia; increased risk of cancer	Runoff from herbicide used on row crops	zero
Alpha/photon emitters	15 picocuries per Liter (pCi/L)	Increased risk of cancer	Erosion of natural deposits of certain minerals that are radioactive and may emit a form of radiation known as alpha radiation	zero
Reference Antimony	0.006	Increase in blood cholesterol; decrease in blood sugar	Discharge from petroleum refineries; fire retardants; ceramics; electronics; solder	0.006
ဆို Arsenic	0.010	Skin damage or problems with circulatory systems, and may have increased risk of getting cancer	Erosion of natural deposits; runoff from orchards; runoff from glass & electronics production wastes	0
Asbestos (fibers >10 micrometers)	7 million fibers per Liter (MFL)	Increased risk of developing benign intestinal polyps	Decay of asbestos cement in water mains; erosion of natural deposits	7 MFL
Atrazine	0.003	Cardiovascular system or reproductive problems	Runoff from herbicide used on row crops	0.003
ခိုင်္ဂ Barium	2	Increase in blood pressure	Discharge of drilling wastes; discharge from metal refineries; erosion of natural deposits	2
Benzene	0.005	Anemia; decrease in blood platelets; increased risk of cancer	Discharge from factories; leaching from gas storage tanks and landfills	zero
Benzo(a)pyrene (PAHs)	0.0002	Reproductive difficulties; increased risk of cancer	Leaching from linings of water storage tanks and distribution lines	zero
ဆို Beryllium	0.004	Intestinal lesions	Discharge from metal refineries and coal-burning factories; discharge from electrical, aerospace, and defense industries	0.004
Beta photon emitters	4 millirems per year	Increased risk of cancer	Decay of natural and man-made deposits of certain minerals that are radioactive and may emit forms of radiation known as photons and beta radiation	zero
Bromate	0.010	Increased risk of cancer	Byproduct of drinking water disinfection	zero
ဆို Cadmium	0.005	Kidney damage	Corrosion of galvanized pipes; erosion of natural deposits; discharge from metal refineries; runoff from waste batteries and paints	0.005
Carbofuran	0.04	Problems with blood, nervous system, or reproductive system	Leaching of soil fumigant used on rice and alfalfa	0.04

DISINFECTANT

National Primary Drinking Water Regulations

Contaminant	MCL or TT ¹ (mg/L) ²	Potential health effects from long-term³ exposure above the MCL	Common sources of contaminant in drinking water	Public Health Goal (mg/L)²
Carbon tetrachloride	0.005	Liver problems; increased risk of cancer	Discharge from chemical plants and other industrial activities	zero
Chloramines (as Cl ₂)	MRDL=4.0 ¹	Eye/nose irritation; stomach discomfort; anemia	Water additive used to control microbes	MRDLG=41
Chlordane	0.002	Liver or nervous system problems; increased risk of cancer	Residue of banned termiticide	zero
Chlorine (as Cl ₂)	MRDL=4.0 ¹	Eye/nose irritation; stomach discomfort	Water additive used to control microbes	MRDLG=4 ¹
Chlorine dioxide (as ClO ₂)	MRDL=0.81	Anemia; infants, young children, and fetuses of pregnant women: nervous system effects	Water additive used to control microbes	MRDLG=0.8 ¹
	1.0	Anemia; infants, young children, and fetuses of pregnant women: nervous system effects	Byproduct of drinking water disinfection	0.8
Chlorobenzene	0.1	Liver or kidney problems	Discharge from chemical and agricultural chemical factories	0.1
ည် Chromium (total)	0.1	Allergic dermatitis	Discharge from steel and pulp mills; erosion of natural deposits	0.1
လို Copper	TT ⁵ ; Action Level=1.3	Short-term exposure: Gastrointestinal distress. Long- term exposure: Liver or kidney damage. People with Wilson's Disease should consult their personal doctor if the amount of copper in their water exceeds the action level	Corrosion of household plumbing systems; erosion of natural deposits	1.3
Cryptosporidium	Π7	Short-term exposure: Gastrointestinal illness (e.g., diarrhea, vomiting, cramps)	Human and animal fecal waste	zero
Cyanide (as free cyanide)	0.2	Nerve damage or thyroid problems	Discharge from steel/metal factories; discharge from plastic and fertilizer factories	0.2
() 2,4-D	0.07	Kidney, liver, or adrenal gland problems	Runoff from herbicide used on row crops	0.07
Dalapon	0.2	Minor kidney changes	Runoff from herbicide used on rights of way	0.2
1,2-Dibromo-3- chloropropane (DBCP)	0.0002	Reproductive difficulties; increased risk of cancer	Runoff/leaching from soil fumigant used on soybeans, cotton, pineapples, and orchards	zero
o-Dichlorobenzene	0.6	Liver, kidney, or circulatory system problems	Discharge from industrial chemical factories	0.6
p-Dichlorobenzene	0.075	Anemia; liver, kidney, or spleen damage; changes in blood	Discharge from industrial chemical factories	0.075
1,2-Dichloroethane	0.005	Increased risk of cancer	Discharge from industrial chemical factories	zero

LEGEND

L+ DISINFECTANT

MICROORGANISM

RADIONUCLIDES

National Primary Drinking Water Regulations

Contaminant	MCL or TT ¹ (mg/L) ²	Potential health effects from long-term ³ exposure above the MCL	Common sources of contaminant in drinking water	Public Health Goal (mg/L) ²
1,1-Dichloroethylene	0.007	Liver problems	Discharge from industrial chemical factories	0.007
cis-1,2- Dichloroethylene	0.07	Liver problems	Discharge from industrial chemical factories	0.07
trans-1,2, Dichloroethylene	0.1	Liver problems	Discharge from industrial chemical factories	0.1
Dichloromethane	0.005	Liver problems; increased risk of cancer	Discharge from industrial chemical factories	zero
1,2-Dichloropropane	0.005	Increased risk of cancer	Discharge from industrial chemical factories	zero
Di(2-ethylhexyl) adipate	0.4	Weight loss, liver problems, or possible reproductive difficulties	Discharge from chemical factories	0.4
Di(2-ethylhexyl) phthalate	0.006	Reproductive difficulties; liver problems; increased risk of cancer	Discharge from rubber and chemical factories	zero
Dinoseb	0.007	Reproductive difficulties	Runoff from herbicide used on soybeans and vegetables	0.007
Dioxin (2,3,7,8-TCDD)	0.00000003	Reproductive difficulties; increased risk of cancer	Emissions from waste incineration and other combustion; discharge from chemical factories	zero
Diquat	0.02	Cataracts	Runoff from herbicide use	0.02
Endothall	0.1	Stomach and intestinal problems	Runoff from herbicide use	0.1
Endrin	0.002	Liver problems	Residue of banned insecticide	0.002
Epichlorohydrin	TT ⁴	Increased cancer risk; stomach problems	Discharge from industrial chemical factories; an impurity of some water treatment chemicals	zero
Ethylbenzene	0.7	Liver or kidney problems	Discharge from petroleum refineries	0.7
Ethylene dibromide	0.00005	Problems with liver, stomach, reproductive system, or kidneys; increased risk of cancer	Discharge from petroleum refineries	zero
Fecal coliform and <i>E. coli</i>	MCL ⁶	Fecal coliforms and <i>E. coli</i> are bacteria whose presence indicates that the water may be contaminated with human or animal wastes. Microbes in these wastes may cause short term effects, such as diarrhea, cramps, nausea, headaches, or other symptoms. They may pose a special health risk for infants, young children, and people with severely compromised immune systems.	Human and animal fecal waste	zero ⁶

LEGEND

+ DISINFECTANT

MICROORGANISM

	Contaminant	MCL or TT ¹ (mg/L) ²	Potential health effects from long-term ³ exposure above the MCL	Common sources of contaminant in drinking water	Public Health Goal (mg/L)²
ిర్ధిం	Fluoride	4.0	Bone disease (pain and tenderness of the bones); children may get mottled teeth	Water additive which promotes strong teeth; erosion of natural deposits; discharge from fertilizer and aluminum factories	4.0
	Ciardia lamblia	TT7	Short-term exposure: Gastrointestinal illness (e.g., diarrhea, vomiting, cramps)	Human and animal fecal waste	zero
\bigcirc	Glyphosate	0.7	Kidney problems; reproductive difficulties	Runoff from herbicide use	0.7
A	Haloacetic acids (HAA5)	0.060	Increased risk of cancer	Byproduct of drinking water disinfection	n/aº
\bigcirc	Heptachlor	0.0004	Liver damage; increased risk of cancer	Residue of banned termiticide	zero
\bigcirc	Heptachlor epoxide	0.0002	Liver damage; increased risk of cancer	Breakdown of heptachlor	zero
	Heterotrophic plate count (HPC)	TT7	HPC has no health effects; it is an analytic method used to measure the variety of bacteria that are common in water. The lower the concentration of bacteria in drinking water, the better maintained the water system is.	HPC measures a range of bacteria that are naturally present in the environment	n/a
\bigcirc	Hexachlorobenzene	0.001	Liver or kidney problems; reproductive difficulties; increased risk of cancer	Discharge from metal refineries and agricultural chemical factories	zero
\bigcirc	Hexachloro- cyclopentadiene	0.05	Kidney or stomach problems	Discharge from chemical factories	0.05
ిర్ధిం	Lead	TT⁵; Action Level=0.015	Infants and children: Delays in physical or mental development; children could show slight deficits in attention span and learning abilities; Adults: Kidney problems; high blood pressure	Corrosion of household plumbing systems; erosion of natural deposits	zero
	Legionella	TT7	Legionnaire's Disease, a type of pneumonia	Found naturally in water; multiplies in heating systems	zero
\bigcirc	Lindane	0.0002	Liver or kidney problems	Runoff/leaching from insecticide used on cattle, lumber, and gardens	0.0002
ిర్తం	Mercury (inorganic)	0.002	Kidney damage	Erosion of natural deposits; discharge from refineries and factories; runoff from landfills and croplands	0.002
\bigcirc	Methoxychlor	0.04	Reproductive difficulties	Runoff/leaching from insecticide used on fruits, vegetables, alfalfa, and livestock	0.04
ංරිං	Nitrate (measured as Nitrogen)	10	Infants below the age of six months who drink water containing nitrate in excess of the MCL could become seriously ill and, if untreated, may die. Symptoms include shortness of breath and blue-baby syndrome.	Runoff from fertilizer use; leaching from septic tanks, sewage; erosion of natural deposits	10

DISINFECTANT

ঙ্গ

÷

MICROORGANISM

RADIONUCLIDES

National Primary Drinking Water Regulations

Contaminant	MCL or TT ¹ (mg/L) ²	Potential health effects from long-term ³ exposure above the MCL	Common sources of contaminant in drinking water	Public Health Goal (mg/L) ²
Nitrite (measured as Nitrogen)	1	Infants below the age of six months who drink water containing nitrite in excess of the MCL could become seriously ill and, if untreated, may die. Symptoms include shortness of breath and blue-baby syndrome.	Runoff from fertilizer use; leaching from septic tanks, sewage; erosion of natural deposits	1
Oxamyl (Vydate)	0.2	Slight nervous system effects	Runoff/leaching from insecticide used on apples, potatoes, and tomatoes	0.2
Pentachlorophenol	0.001	Liver or kidney problems; increased cancer risk	Discharge from wood-preserving factories	zero
Picloram	0.5	Liver problems	Herbicide runoff	0.5
Polychlorinated biphenyls (PCBs)	0.0005	Skin changes; thymus gland problems; immune deficiencies; reproductive or nervous system difficulties; increased risk of cancer	Runoff from landfills; discharge of waste chemicals	zero
Radium 226 and Radium 228 (combined)	5 pCi/L	Increased risk of cancer	Erosion of natural deposits	zero
炎 Selenium	0.05	Hair or fingernail loss; numbness in fingers or toes; circulatory problems	Discharge from petroleum and metal refineries; erosion of natural deposits; discharge from mines	0.05
Simazine	0.004	Problems with blood	Herbicide runoff	0.004
Styrene	0.1	Liver, kidney, or circulatory system problems	Discharge from rubber and plastic factories; leaching from landfills	0.1
Tetrachloroethylene	0.005	Liver problems; increased risk of cancer	Discharge from factories and dry cleaners	zero
ဆို Thallium	0.002	Hair loss; changes in blood; kidney, intestine, or liver problems	Leaching from ore-processing sites; discharge from electronics, glass, and drug factories	0.0005
Toluene	1	Nervous system, kidney, or liver problems	Discharge from petroleum factories	1
Total Coliforms	5.0 percent ⁸	Coliforms are bacteria that indicate that other, potentially harmful bacteria may be present. See fecal coliforms and <i>E. coli</i>	Naturally present in the environment	zero
Total Trihalomethanes (TTHMs)	0.080	Liver, kidney, or central nervous system problems; increased risk of cancer	Byproduct of drinking water disinfection	n/aº
Toxaphene	0.003	Kidney, liver, or thyroid problems; increased risk of cancer	Runoff/leaching from insecticide used on cotton and cattle	zero
2,4,5-TP (Silvex)	0.05	Liver problems	Residue of banned herbicide	0.05
1,2,4- Trichlorobenzene	0.07	Changes in adrenal glands	Discharge from textile finishing factories	0.07

LEGEND

+ DISINFECTANT

MICROORGANISM

National Primary Drinking Water Regulations

EPA 816-F-09-004 | MAY 2009

Contaminant	MCL or TT ¹ (mg/L) ²	Potential health effects from long-term ³ exposure above the MCL	Common sources of contaminant in drinking water	Public Health Goal (mg/L)²
I,1,1- Trichloroethane	0.2	Liver, nervous system, or circulatory problems	Discharge from metal degreasing sites and other factories	0.2
1,1,2- Trichloroethane	0.005	Liver, kidney, or immune system problems	Discharge from industrial chemical factories	0.003
Trichloroethylene	0.005	Liver problems; increased risk of cancer	Discharge from metal degreasing sites and other factories	zero
Turbidity	Π7	Turbidity is a measure of the cloudiness of water. It is used to indicate water quality and filtration effectiveness (e.g., whether disease- causing organisms are present). Higher turbidity levels are often associated with higher levels of disease-causing microorganisms such as viruses, parasites, and some bacteria. These organisms can cause short term symptoms such as nausea, cramps, diarrhea, and associated headaches.	Soil runoff	n/a
Uranium	30µg/L	Increased risk of cancer, kidney toxicity	Erosion of natural deposits	zero
Vinyl chloride	0.002	Increased risk of cancer	Leaching from PVC pipes; discharge from plastic factories	zero
Viruses (enteric)	Π ⁷	Short-term exposure: Castrointestinal illness (e.g., diarrhea, vomiting, cramps)	Human and animal fecal waste	zero
Xylenes (total)	10	Nervous system damage	Discharge from petroleum factories; discharge from chemical factories	10
LEGEND	IT DIS BY	SINFECTION INORGANIC MICROORGANI	SM ORGANIC RADI CHEMICAL RADI	ONUCLIDES

NOTES

1 Definitions

- Maximum Contaminant Level Goal (MCLG): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLCs allow for a margin of safety and are non-enforceable public health goals.
- Maximum Contaminant Level (MCL): The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to MCLGs as feasible using the best available treatment technology and taking cost into consideration. MCLs are enforceable standards.
- Maximum Residual Disinfectant Level Goal (MRDLG): The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.
- Maximum Residual Disinfectant Level (MRDL): The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.
- Treatment Technique (TT): A required process intended to reduce the level of a contaminant in drinking water.

2 Units are in milligrams per liter (mg/L) unless otherwise noted. Milligrams per liter are equivalent to parts per million (ppm).

- 3 Health effects are from long-term exposure unless specified as short-term exposure.
- 4 Each water system must certify annually, in writing, to the state (using third-party or manufacturers certification) that when it uses acrylamide and/or epichlorohydrin to treat water, the combination (or product) of dose and monomer level does not exceed the levels specified, as follows: Acrylamide = 0.05 percent dosed at 1 mg/L (or equivalent); Epichlorohydrin = 0.01 percent dosed at 20 mg/L (or equivalent).
- 5 Lead and copper are regulated by a Treatment Technique that requires systems to control the corrosiveness of their water. If more than 10 percent of tap water samples exceed the action level, water systems must take additional steps. For copper, the action level is 1.3 mg/L, and for lead is 0.015 mg/L.
- 6 A routine sample that is fecal coliform-positive or E. coli-positive triggers repeat samplesif any repeat sample is total coliform-positive, the system has an acute MCL violation. A routine sample that is total coliform-positive and fecal coliform-negative or E. colinegative triggers repeat samples--if any repeat sample is fecal coliform-positive or E. coli-positive, the system has an acute MCL violation. See also Total Coliforms.

7 EPA's surface water treatment rules require systems using surface water or ground water under the direct influence of surface water to (1) disinfect their water, and (2) filter their water or meet criteria for avoiding filtration so that the following contaminants are controlled at the following levels:

Cryptosporidium: 99 percent removal for systems that filter. Unfiltered systems are required to include Cryptosporidium in their existing watershed control provisions.

- Ciardia lamblia: 99.9 percent removal/inactivation
- Viruses: 99.9 percent removal/inactivation
- Legionella: No limit, but EPA believes that if Giardia and viruses are removed/ inactivated, according to the treatment techniques in the surface water treatment rule, Legionella will also be controlled.
- Turbidity: For systems that use conventional or direct filtration, at no time can turbidity (cloudiness of water) go higher than 1 nephelometric turbidity unit (NTU), and samples for turbidity must be less than or equal to 0.3 NTU in at least 95 percent of the samples in any month. Systems that use filtration other than the conventional or direct filtration must follow state limits, which must include turbidity at no time exceeding 5 NTU.
 HPC: No more than 500 bacterial colonies per milliliter
- Long Term 1 Enhanced Surface Water Treatment: Surface water systems or ground water systems under the direct influence of surface water serving fewer than 10,000 people must comply with the applicable Long Term 1 Enhanced Surface Water Treatment Rule provisions (e.g. turbidity standards, individual filter monitoring, *Cryptosporidium* removal requirements, updated watershed control requirements for unfiltered systems).
- Long Term 2 Enhanced Surface Water Treatment: This rule applies to all surface water systems or ground water systems under the direct influence of surface water. The rule targets additional *Cryptosporidium* treatment requirements for higher risk systems and includes provisions to reduce risks from uncovered finished water storages facilities and to ensure that the systems maintain microbial protection as they take steps to reduce the formation of disinfection byproducts. (Monitoring start dates are staggered by system size. The largest systems (serving at least 100,000 people) will begin monitoring in October 2006 and the smallest systems (serving fewer than 10,000 people) will not begin monitoring until October 2008. After completing monitoring and determining their treatment bin, systems generally have three years to comply with any additional treatment requirements.)
- Filter Backwash Recycling: The Filter Backwash Recycling Rule requires systems that recycle to return specific recycle flows through all processes of the system's existing conventional or direct filtration system or at an alternate location approved by the state
- 8 No more than 5.0 percent samples total coliform-positive in a month. (For water systems that collect fewer than 40 routine samples per month, no more than one sample can be total coliform-positive per month.) Every sample that has total coliform must be analyzed for either fecal coliforms or E. coli. If two consecutive TC-positive samples, and one is also positive for E. coli or fecal coliforms, system has an acute MCL violation.
- 9 Although there is no collective MCLG for this contaminant group, there are individual MCLGs for some of the individual contaminants:
 Haloacetic acids: dichloroacetic acid (zero); trichloroacetic acid (0.3 mg/L)
 - Haloacetic acids: dichloroacetic acid (zero); trichloroacetic acid (0.3 mg// Trihalomethanes: bromodichloromethane (zero); bromoform (zero); dibromochloromethane (0.06 mg/L)

NATIONAL SECONDARY DRINKING WATER REGULATION

National Secondary Drinking Water Regulations are non-enforceable guidelines regarding contaminants that may cause cosmetic effects (such as skin or tooth discoloration) or aesthetic effects (such as taste, odor, or color) in drinking water. EPA recommends secondary standards to water systems but does not require systems to comply. However, some states may choose to adopt them as enforceable standards.

Contaminant	Secondary Maximum Contaminant Level
Aluminum	0.05 to 0.2 mg/L
Chloride	250 mg/L
Color	15 (color units)
Copper	1.0 mg/L
Corrosivity	Noncorrosive
Fluoride	2.0 mg/L
Foaming Agents	0.5 mg/L
Iron	0.3 mg/L
Manganese	0.05 mg/L
Odor	3 threshold odor number
рН	6.5-8.5
Silver	0.10 mg/L
Sulfate	250 mg/L
Total Dissolved Solids	500 mg/L
Zinc	5 mg/L

FOR MORE INFORMATION ON EPA'S SAFE DRINKING WATER:

visit: epa.gov/safewater

call: (800) 426-4791

ADDITIONAL INFORMATION:

To order additional posters or other ground water and drinking water publications, please contact the National Service Center for Environmental Publications at: **(800) 490-9198**, or email: **nscep@bps-Imit.com**.

Built Environment Testing

Report for:

Paul Boblak, Miora Bratian HOH Water Technology 500 S Vermont St. Palatine, IL 60067

Regarding:

Eurofins Built Environment Testing Central, LLC Project: 477652; CATCO CN1005393-O'Hare TERMINAL 2 EML ID: 3958997

Approved by:

Laboratory Manager Itzel Cuellar

Dates of Analysis: Legionella-CDC method: 03-05-2025

Service SOPs: Legionella-CDC method (EB-BT-S-1045) AIHA LAP, LLC accredited service, Lab ID #176641

All samples were received in acceptable condition unless noted in the Report Comments portion in the body of the report. Due to the nature of the analyses performed, field blank correction of results is not applied. The results relate only to the samples as received and tested.

Eurofins Built Environment Testing Central, LLC ("the Company"), a member of the Eurofins Built Environment Testing group of companies, shall have no liability to the client or the client's customer with respect to decisions or recommendations made, actions taken or courses of conduct implemented by either the client or the client's customer as a result of or based upon the Test Results. In no event shall the Company be liable to the client with respect to the Test Results except for the Company's own willful misconduct or gross negligence nor shall the Company be liable for incidental or consequential damages or lost profits or revenues to the fullest extent such liability may be disclaimed by law, even if the Company has been advised of the possibility of such damages, lost profits or lost revenues. In no event shall the Company's liability with respect to the Test Results exceed the amount paid to the Company by the client therefor.

Eurofins Built Environment Testing Central, LLC's LabServe® reporting system includes automated fail-safes to ensure that all AIHA LAP, LLC quality requirements are met and notifications are added to reports when any quality steps remain pending.

Client: HOH Water Technology C/O: Paul Boblak, Miora Bratian Re: 477652; CATCO CN1005393-O'Hare TERMINAL 2

Eurofins Built Environment Testing Central, LLC 1815 West Diehl Road, Suite 800, Naperville, IL 60563

(866) 871-1984 www.eurofinsus.com/Built

Date of Sampling: 02-24-2025 Date of Receipt: 02-24-2025 Date of Report: 03-06-2025

Legionella Summary Sheet:

Sample ID	Location	Analysis Date	Volume Filtered (ml)	Detection Limit (cfu/ml)†	Analytical Sensitivity (cfu/ml)†	Total Legionella (cfu/ml)§	Legionella Detected
1	Potable Airfield G-2	03/05/2025	200	0.1	0.1	ND	ND
2	Potable Airfield E-15	03/05/2025	200	0.1	0.1	ND	ND
3	Potable Airfield E-17	03/05/2025	200	0.1	0.1	ND	ND

ND = None Detected

For water samples, the submitted volume affects dilution factor and limit of detection. A sample volume of at least 200ml is recommended for potable water samples for environments with high-risk populations and some other applications. Guidance on sampling, action thresholds and other relevant information can be found at (https://www.osha.gov) as well as other international, national and local agencies.

Identifiers listed without a data entry were not detected during the course of the analysis for the respective sample.

"Other Legionella species" include, but are not limited to, the following organisms: Legionella anisa, Legionella bozemanii, Legionella dumoffii, Legionella gormanii, Legionella jordanis, Legionellalongbeachae 1 and 2, and Legionella micdadei.

[†] The limit of detection is a raw count of 1 at the lowest dilution plated, represented here as a theoretical detection limit of 1 raw count/ reporting unit x the dilution factor on the lowest dilution plated. The analytical sensitivity is represented as being equal to 1 raw count/ reporting unit x the dilution factor, but on the on the lowest reportable (or countable) dilution plated. A reported value for cfu/unit value of "ND" signifies that the test results did not detect any colony forming units down to the limit of detection.

§ Total CFU/unit has been rounded to two significant figures to reflect analytical precision

Client: HOH Water Technology C/O: Paul Boblak, Miora Bratian Re: 477652; CATCO CN1005393-O'Hare TERMINAL 2

OUANTITATIVE *LEGIONELLA* **REPORT**

Eurofins Built Environment Testing Central, LLC

1815 West Diehl Road, Suite 800, Naperville, IL 60563 (866) 871-1984 www.eurofinsus.com/Built

Date of Sampling: 02-24-2025 Date of Receipt: 02-24-2025 Date of Report: 03-06-2025

		-					
Sample ID:Location	1:			2:		3:	
	Potable A	irfield G-2	Potable A	irfield E-15	Potable Ai	rfield E-17	
Comments (see below)	N	one	N	one	No	one	
Lab ID-Version [‡] :	19664	4810-1	19664	4811-1	19664	812-1	
Analysis Date:	03/05	5/2025	03/05	5/2025	03/05	5/2025	
Sample type	Water	sample	Water	sample	Water	sample	
Volume filtered (ml)	200		200		200		
Reporting Units	1	ml	1 ml		1 ml		
Detection Limit [†]	().1	0.1		0.1		
Analytical Sensitivity†	().1	0.1		0.1		
	raw ct.	cfu*/unit	raw ct.	cfu*/unit	raw ct.	cfu*/unit	
L. pneumophila serotype 1							
L. pneumophila serotype 2-15							
Other Legionella species							
§TOTAL Legionella	ND	ND	ND	ND	ND	ND	

*cfu = colony forming units ND = none detected **Comments:**

For water samples, the submitted volume affects dilution factor and limit of detection. A sample volume of at least 200ml is recommended for potable water samples for environments with high-risk populations and some other applications. Guidance on sampling, action thresholds and other relevant information can be found at (https://www.osha.gov) as well as other international, national and local agencies.

Identifiers listed without a count or data entry were not detected during the course of the analysis for the respective sample.

"Other Legionella species" include, but are not limited to, the following organisms: *Legionella anisa, Legionella bozemanii, Legionella dumoffii, Legionella gormanii, Legionella jordanis, Legionella longbeachae 1 and 2, and Legionella micdadei.*

[†] The limit of detection is a raw count of 1 at the lowest dilution plated, represented here as a theoretical detection limit of 1 raw count/ reporting unit x the dilution factor on the lowest dilution plated. The analytical sensitivity is represented as being equal to 1 raw count/ reporting unit x the dilution factor, but on the on the lowest reportable (or countable) dilution plated. A reported value for cfu/unit value of "ND" signifies that the test results did not detect any colony forming units down to the limit of detection.

§ Total CFU/unit has been rounded to two significant figures to reflect analytical precision.

Client: HOH Water Technology C/O: Paul Boblak, Miora Bratian Re: 477652; CATCO CN1005393-O'Hare TERMINAL 2

QUANTITATIVE LEGIONELLA REPORT PROJECT ANALYST AND SIGNATORY REPORT

Project Analyst

Analyst: Dhara Patel

Eurofins Built Environment Testing Central, LLC

1815 West Diehl Road, Suite 800, Naperville, IL 60563 (866) 871-1984 www.eurofinsus.com/Built

Date of Sampling: 02-24-2025 Date of Receipt: 02-24-2025 Date of Report: 03-06-2025

The test report shall not be reproduced except in full, without written approval of the laboratory. The report must not be used by the client to claim product certification, approval, or endorsement by AIHA LAP, LLC, or any agency of the federal government. The Company reserves the right to dispose of all samples after a period of thirty (30) days, according to all state and federal guidelines, unless otherwise specified.

A "Version" indicated by -"x" after the Lab ID# with a value greater than 1 indicates a sample with amended data. The revision number is reflected by the value of "x".

Eurofins Built Environment Testing Central, LLC

EMLab ID: 3958997, Page 4 of 4

March 6, 2025

Mr. Joseph Shirley Operations Manager O'Hare Terminal 5 10000 West O'Hare Dr. Chicago, IL 60666

Subject: T3 Airfield Potable Water Biological & Water Screening Results

Dear Mr. Shirley,

Recently, four (4) potable waters were sampled to test for microbiological levels and general water screening chemistry. Potable water piping & equipment can harbor microbiology of public health concern. To address these concerns, the EPA has created the National Primary Drinking Water Regulations, which are attached for your reference. Additionally, there are standards for controlling Legionellosis written by multiple industry organizations and there are OSHA regulations regarding the presence of *Legionella* bacteria; including action levels and appropriate responses for bacteria counts at or above 10 CFU/ml and EPA's MCL goal of zero.

The test results performed on the potable water samples collected are attached for your review, which include the following list.

- WATER SCREENING ANALYSES 40+ Properties, Cations, Anions
- (including Turbidity & Conductivity)
- FREE CHLORINE ANALYSES
- *LEGIONELLA* BACTERIA ANALYSES
- HETEROTROPHIC AEROBIC BACTERIA COLONY PLATE COUNT at 72 F (22C)
- HETEROTROPHIC AEROBIC BACTERIA COLONY PLATE COUNT at 99 F (37C)
- HETEROTROPHIC ANAEROBIC BACTERIA COLONY PLATE COUNT
- PSEUDOMONAS AERUGINOSA ANALYSES
- COLIFORMS (TOTAL COLIFORMS) ANALYSES
- ESCHERICHIA COLI (E COLI) ANALYSES
- ENTEROCOCCI (FEACAL STREPTOCOCCI) ANALYSES

Please review the test result reports that are attached and compare them to your requirements.

Where Water Works.

hohwatertechnology.com | O (800) 577-2211

These parameters below form the basis of some of your requirements, based on IATAmandated parameters, OSHA & EPA's National Primary Drinking Water Regulations...

PARAMETERS	LINE# ON REPORT	LIMITS
рН	11	6.5 to 9.5
Barium	19	< 2 ppm
Chromium	21	< 0.1 ppm
Copper	22	< 1.3 ppm
Lead	24	< 0.015 ppm
Fluoride	40	< 4 ppm
Nitrate as N	44	< 10 ppm
Nitrite as N	45	< 1 ppm
Heterotrophic Aerobic Bacteria	72	< 500 CFU/mL
Colony Plate Count At 72 F (22c)		
Heterotrophic Aerobic Bacteria	73	< 100 CFU/mL IATA; < 500 CFU /
Colony Plate Count At 99 F (37c)		mL EPA
Heterotrophic Anaerobic Bacteria	74	< 500 CFU/mL
Colony Plate Count		
Coliforms (Total Coliforms)	80	<5% of samples/One sample Max.
Escherichia Coli (E Coli)	82	< 1 CFU/mL
Enterococci (Feacal Streptococci)	83	< 1 CFU/mL
Pseudomonas Aeruginosa	84	< 100 CFU/mL
Turbidity	88	< 1 NTU
Free Chlorine as CL ₂	94	0.3 to 0.8 ppm; 4ppm Max.
Lagionalla Pactoria	-	< 10 CFU/mL OSHA; No limit
Legionella Dacteria		EPA; Zero Public Health Goal EPA

RESULTS

Based on the Regulations & Guidelines, the water levels tested are within limits or under the Maximum Contaminant Level (MCL), except for the notes below. These systems are considered to have generally effective water system conditions and maintenance, although with some more maintenance recommended.

The L26 shows a Free Chlorine level below the range of the IATA range, but under the EPA's Maximum Contaminant Level (MCL). The Aerobic Heterotrophic Bacteria Plate Count (HPC) at 22°C is above limit. The Heterotrophic Bacteria has no health effects; it is an analytic method used to measure the variety of bacteria that are common in water. The lower the concentration of bacteria in drinking water, the better maintained the water system is. The rest of the biological levels are all within specified limits. Considering the low Free Chlorine level and high HPC, this location is recommended for more manual flushing. As a general practice, all lines should get regular flow of water to maintain proper Free Chlorine levels to minimize risk of biological activity. Thank you for the opportunity to be of service. If you have any questions, please contact me at your earliest convenience.

Sincerely,

HOH WATER TECHNOLOGY, INC.

Faul A. Boblak

Paul A. Boblak, Lead Water Quality Engineer, CWT

DATE:	3/3/2025
TO:	Paul Boblak
FROM:	Andrew Adamsky
SUBJECT:	CATCO O'Hare International Airport, Terminal 3 Chivago, IL Analysis of domestic waters.

Dear Paul:

Attached you will find our laboratory analysis reports pertaining to the above referenced samples our laboratory number 60877.

I hope this information satisfies your requirements. If any further work or discussion is needed, please get back to me.

Very truly yours, *Andrew Adamsky* Andrew Adamsky

AA Enclosure

Where Water Works.. hohwatertechnology.com | 0 (800) 577-2211

			LA	BORAT	ORY RE	PORT -	WATER	ANALYS	SIS	Customer	No.:	1005393
			Regarding	CATCO						Report No).:	60877
	WATER	0.01/	Location:	O'Hare I	nternation	al Airport	, Termina	l 3		Report Da	ite:	3/3/25
	TECHNO	_0GY		Chivago	, IL					Login Dat	e:	2/25/25
										Sample D	ate:	1/27/25
500 S	outh Vermont Street											
Palati	ne, IL 60067		,	F		7		26		07		
(800)	577-2211		¹	-9		.1	L.	20	L.	21		
Fax: (847) 358-7082											
	I		Soluble	Insoluble	Soluble	Insoluble	Soluble	Insoluble	Soluble	Insoluble	Soluble	Insoluble
1.	Alkalinity ("P")	as CaCO ₃	0		0		0		0			
2	Alkalinity ("M")	as CaCO ₃	115		116		117		114			
3.	Alkalinity ("OH") (calculated)	as CaCO ₃										
W 4	Free Mineral Acidity	as CaCO ₃										
a 5.	Chemical Oxygen Demand	1 (C.O.D.)	1		5		12		3			
t 6.	Disselved Selide		200		200		200		200			
	Hardnaaa (Calaium)	25 C2CO	200		200		209		209			
r 8.	Hardness (Calcium)	$as CaCO_3$	52		99 52		99 53		99 52			
P 10	Hardness (Total)	as CaCO ₃	151		151		152		151			
r 11	nH	43 04003	79		78		7.8		78			
12	Refractive Index		1.0		7.0		1.0		1.0			
o 13.	Specific Conductance	µmhos/cm	317		316		318		317			
p 14	Specific Gravity	g/ml										
e 15	Suspended Solids			0.0		0.0		1.0		1.5		
16	Total Inorganic Carbon											
17.	Aluminum		0.00		0.00		0.12		0.01			
+ 10	Barium	as Ai			0.00		0.13		0.01			
1 20	Calcium	as Da	30.6		30.6		30.5		30.5			
a 20.	Chromium	as Ca	0.00		0.00		0.00		0.00			
\$ 22	Copper	as Cu	0.00		0.00		0.00		0.00			
23	Iron	as Fe	0.02		0.01		0.22		0.01			
24	Lead	as Pb	0.00		0.00		0.001		0.00			
25	Lithium	asli	0.00		0.000		0.00		0.00			
26	Magnesium	as Mo	12.7		12.6		13.0		12.6			
27	Manganese	as Mn	0.00		0.00		0.00		0.00			
28	Nickel	as Ni	0.00		0.00		0.00		0.00			
29	Potassium	as K	1.53		1.53		1.60		1.53			
30	Silver	as Ag	0.00		0.00		0.00		0.00			
C 31.	Sodium	as Na	9.22		9.20		9.48		9.35			
a 32.	Strontium	as Sr	0.14		0.14		0.14		0.14			
t 33.	Zinc	as Zn	0.01		0.01		0.04		0.00			
34.	Total Cation Millequivalent	S	3.301		3.294		3.355		3.295			
n 35.	Acetate	as C ₂ H ₃ O ₂	0.00		0.02		0.05		0.00			
s 36	Bromide	as Br	0.00		0.00		0.00		0.00			
37	Chloride	as Cl	16.0		16.0		16.2		16.1			
38.	Chlorate	as CIO ₃	0.00		0.00		0.00		0.00			
39	Chromate	as CrO ₄										
40.		as F	0.75		0.76		0.75		0.75			
41.	Formate	as CHO ₂	0.03		0.03		0.03		0.00			
42	Giycolate	as U ₂ H ₃ U ₃	0.00		0.00		0.00		0.00			
43			0.00		0.00		0.00		0.00			
44.	Nitrito		1.20		1.30		1.06		1.15			
45					0.00		0.00		0.00			
46	Phosphato (ortho)	as D ₂ O ₄	1.00		1.10		1.00		0.00	1		
47	Phosphorus (total)	as P	0.10		0.66		C0.1		0.67			
40	Pronionate	as C ₂ H ₂ O ₂	0.00		0.00		0.04		0.07			
50	Sulfamate	as NH ₂ SO ₂	0.00		0.00		0.00		0.00			
51	Sulfate	as SO ₄	26.9		27 /		27 0		26 0			
52	Sulfur (total)	as S	9.57		9 60		9.62		9.62			
53	Total Anion Millequivalents	300	3 455		3,500		3.501		3 440			
54	Ammonia	as NH₃	0.400		0.000		5.007		5.770			
55	Benzotriazole	as C _s H _s N ₂										
1 - 5	Boron	as B	0.00		0.00		0.00		0.00			
56				1	2.20		2.50		2 30			
56 57	Silica	as SiO ₂	2.31		2.321	1	2.3/		2.00			
56. 57. 58.	Silica Sodium Nitrite	as SiO ₂ as NaNO ₂	2.31		2.32		2.37		2.30			
56 57 58 59	Silica Sodium Nitrite Sodium Sulfite	as SiO_2 as $NaNO_2$ as Na_2SO_3	2.31		2.32		2.37		2.30			

				LA	BORAT	ORY RE	PORT -	WATER	ANALYS	SIS	Custome	r No.:	1005393
L		WATER		Regarding	CATCO						Report N	0.:	60877
		TECHNOL	OGY	Location:	O'Hare Ir	nternation	al Airport	, Termina	13		Report D	ate:	3/3/25
		U 16			Chivago,	IL		,			Login Da	te:	2/25/25
											Sample D	Date:	1/27/25
50		outh Vermont Street											
Pa	alatir												
(8	00)	577-2211		L	.5	L	7	Lź	26	L	27		
Èa	ax: (8	347) 358-7082											
		,		Soluble	Insoluble	Soluble	Insoluble	Soluble	Insoluble	Soluble	Insoluble	Soluble	Insoluble
	61.	Bromate	as BrO₃										
с	62.	Chlorite	as CIO ₂										
0	63.	Cyclohexylamine*	as $C_6H_{13}N$										
m	64.	Diethylamine*	as $C_4H_{11}N$										
p o	65.	Diethylaminoethanol*	as C ₆ H ₁₅ NO										
u	66.	Ethylamine*	as C ₂ H ₇ N										
n	67.	Morpholine*	as C₄H ₉ NO										
d	68.	Diethylene Glycol*	% by volume	2									
S	69.	Ethylene Glycol*	% by volume	2									
	70.	Propylene Glycol*	% by volume	2									
	71.	[Methanol*	% by volume										
i IVI	70	@ 22°C(Aerobic)	CELI/m	ND		ND		570		ND			
c	/2.	Hataratrophia Plata Court	GEO/MI										
r	72	@ 37°C(Aerobic)	CELI/ml	ND		ND		7		ND			
0	73.	Heterotrophic Plate Count											
i	74	(Anaerobic)	CFU/ml	ND		ND		ND		ND			
0	75	Denitrifying Bacteria	CFU/ml										
Т	76.	Fecal Coliform	CFU/100 ml										
0	77.	Iron Bacteria	CFU/ml										
9 i	78.	Mold	CFU/ml										
с	79.	Sulfate Reducers	CFU/ml										
а	80.	Total Coliform	CFU/100 ml	<1		<1		<1		<1			
	81.	Yeast	CFU/ml										
	82.	E.Coli	CFU/100 ml	<1		<1		<1		<1			
		Enterococci											
	83.	(Fecal Streptococci)	MPN/100 mi	<1		<1		<1		<1			
	84.	Pseudomonas Aeruginosa	MPN/100 ml	<1		<1		<1		<1			
	85.	Residue by Evaporation											
	86.	Volatile Solids											
	87.	System Capacity	gal.										
	88.	Turbidity	NTU	0.16		0.14		0.11		0.12			
	89.	P.T.S.A.	ppb										
	90.	Dissolved Oxygen	as O ₂										
	91.	DEHA	ppb										
	92.		ppp										
	93.		as Cl	1.07		1.00		0.02		1.00			
	94. 05	Sulfide	as 012	1.07		1.00		0.03		1.00			
	96	Arsenic	as o as As										
	97	Mercury	as Ho	<u></u>									
	98	Nitrate-Nitrite Nitrogen	as N										
	99.	Nitrate Nitrogen	as N										
	100.	Nitrite Nitrogen	as N										
	101.	Phosphonate											
				l							I		

LEH All data except pH in parts per million or as indicated

Analyst

*Analysis by Gas Chromatography.

National Primary Drinking Water Regulations

Contaminant	MCL or TT ¹ (mg/L) ²	Potential health effects from long-term ³ exposure above the MCL	Common sources of contaminant in drinking water	Public Health Goal (mg/L) ²
Acrylamide	TT ⁴	Nervous system or blood problems; increased risk of cancer	Added to water during sewage/ wastewater treatment	zero
Alachlor	0.002	Eye, liver, kidney, or spleen problems; anemia; increased risk of cancer	Runoff from herbicide used on row crops	zero
Alpha/photon emitters	15 picocuries per Liter (pCi/L)	Increased risk of cancer	Erosion of natural deposits of certain minerals that are radioactive and may emit a form of radiation known as alpha radiation	zero
Reference Antimony	0.006	Increase in blood cholesterol; decrease in blood sugar	Discharge from petroleum refineries; fire retardants; ceramics; electronics; solder	0.006
့ငှိ Arsenic	0.010	Skin damage or problems with circulatory systems, and may have increased risk of getting cancer	Erosion of natural deposits; runoff from orchards; runoff from glass & electronics production wastes	0
Asbestos (fibers >10 micrometers)	7 million fibers per Liter (MFL)	Increased risk of developing benign intestinal polyps	Decay of asbestos cement in water mains; erosion of natural deposits	7 MFL
Atrazine	0.003	Cardiovascular system or reproductive problems	Runoff from herbicide used on row crops	0.003
ခိုင်္ဂ Barium	2	Increase in blood pressure	Discharge of drilling wastes; discharge from metal refineries; erosion of natural deposits	2
Benzene	0.005	Anemia; decrease in blood platelets; increased risk of cancer	Discharge from factories; leaching from gas storage tanks and landfills	zero
Benzo(a)pyrene (PAHs)	0.0002	Reproductive difficulties; increased risk of cancer	Leaching from linings of water storage tanks and distribution lines	zero
ဆို Beryllium	0.004	Intestinal lesions	Discharge from metal refineries and coal-burning factories; discharge from electrical, aerospace, and defense industries	0.004
Beta photon emitters	4 millirems per year	Increased risk of cancer	Decay of natural and man-made deposits of certain minerals that are radioactive and may emit forms of radiation known as photons and beta radiation	zero
Bromate	0.010	Increased risk of cancer	Byproduct of drinking water disinfection	zero
ဆို Cadmium	0.005	Kidney damage	Corrosion of galvanized pipes; erosion of natural deposits; discharge from metal refineries; runoff from waste batteries and paints	0.005
Carbofuran	0.04	Problems with blood, nervous system, or reproductive system	Leaching of soil fumigant used on rice and alfalfa	0.04

DISINFECTANT

National Primary Drinking Water Regulations

Contaminant	MCL or TT ¹ (mg/L) ²	Potential health effects from long-term³ exposure above the MCL	Common sources of contaminant in drinking water	Public Health Goal (mg/L)²
Carbon tetrachloride	0.005	Liver problems; increased risk of cancer	Discharge from chemical plants and other industrial activities	zero
Chloramines (as Cl ₂)	MRDL=4.0 ¹	Eye/nose irritation; stomach discomfort; anemia	Water additive used to control microbes	MRDLG=41
Chlordane	0.002	Liver or nervous system problems; increased risk of cancer	Residue of banned termiticide	zero
Chlorine (as Cl ₂)	MRDL=4.0 ¹	Eye/nose irritation; stomach discomfort	Water additive used to control microbes	MRDLG=4 ¹
Chlorine dioxide (as ClO ₂)	MRDL=0.81	Anemia; infants, young children, and fetuses of pregnant women: nervous system effects	Water additive used to control microbes	MRDLG=0.8 ¹
	1.0	Anemia; infants, young children, and fetuses of pregnant women: nervous system effects	Byproduct of drinking water disinfection	0.8
Chlorobenzene	0.1	Liver or kidney problems	Discharge from chemical and agricultural chemical factories	0.1
ည် Chromium (total)	0.1	Allergic dermatitis	Discharge from steel and pulp mills; erosion of natural deposits	0.1
လို Copper	TT ⁵ ; Action Level=1.3	Short-term exposure: Gastrointestinal distress. Long- term exposure: Liver or kidney damage. People with Wilson's Disease should consult their personal doctor if the amount of copper in their water exceeds the action level	Corrosion of household plumbing systems; erosion of natural deposits	1.3
Cryptosporidium	Π7	Short-term exposure: Gastrointestinal illness (e.g., diarrhea, vomiting, cramps)	Human and animal fecal waste	zero
Cyanide (as free cyanide)	0.2	Nerve damage or thyroid problems	Discharge from steel/metal factories; discharge from plastic and fertilizer factories	0.2
() 2,4-D	0.07	Kidney, liver, or adrenal gland problems	Runoff from herbicide used on row crops	0.07
Dalapon	0.2	Minor kidney changes	Runoff from herbicide used on rights of way	0.2
1,2-Dibromo-3- chloropropane (DBCP)	0.0002	Reproductive difficulties; increased risk of cancer	Runoff/leaching from soil fumigant used on soybeans, cotton, pineapples, and orchards	zero
o-Dichlorobenzene	0.6	Liver, kidney, or circulatory system problems	Discharge from industrial chemical factories	0.6
p-Dichlorobenzene	0.075	Anemia; liver, kidney, or spleen damage; changes in blood	Discharge from industrial chemical factories	0.075
1,2-Dichloroethane	0.005	Increased risk of cancer	Discharge from industrial chemical factories	zero

LEGEND

L+ DISINFECTANT

MICROORGANISM

RADIONUCLIDES

National Primary Drinking Water Regulations

Contaminant	MCL or TT ¹ (mg/L) ²	Potential health effects from long-term ³ exposure above the MCL	Common sources of contaminant in drinking water	Public Health Goal (mg/L) ²
1,1-Dichloroethylene	0.007	Liver problems	Discharge from industrial chemical factories	0.007
cis-1,2- Dichloroethylene	0.07	Liver problems	Discharge from industrial chemical factories	0.07
trans-1,2, Dichloroethylene	0.1	Liver problems	Discharge from industrial chemical factories	0.1
Dichloromethane	0.005	Liver problems; increased risk of cancer	Discharge from industrial chemical factories	zero
1,2-Dichloropropane	0.005	Increased risk of cancer	Discharge from industrial chemical factories	zero
Di(2-ethylhexyl) adipate	0.4	Weight loss, liver problems, or possible reproductive difficulties	Discharge from chemical factories	0.4
Di(2-ethylhexyl) phthalate	0.006	Reproductive difficulties; liver problems; increased risk of cancer	Discharge from rubber and chemical factories	zero
Dinoseb	0.007	Reproductive difficulties	Runoff from herbicide used on soybeans and vegetables	0.007
Dioxin (2,3,7,8-TCDD)	0.00000003	Reproductive difficulties; increased risk of cancer	Emissions from waste incineration and other combustion; discharge from chemical factories	zero
Diquat	0.02	Cataracts	Runoff from herbicide use	0.02
Endothall	0.1	Stomach and intestinal problems	Runoff from herbicide use	0.1
Endrin	0.002	Liver problems	Residue of banned insecticide	0.002
Epichlorohydrin	TT ⁴	Increased cancer risk; stomach problems	Discharge from industrial chemical factories; an impurity of some water treatment chemicals	zero
Ethylbenzene	0.7	Liver or kidney problems	Discharge from petroleum refineries	0.7
Ethylene dibromide	0.00005	Problems with liver, stomach, reproductive system, or kidneys; increased risk of cancer	Discharge from petroleum refineries	zero
Fecal coliform and <i>E. coli</i>	MCL ⁶	Fecal coliforms and <i>E. coli</i> are bacteria whose presence indicates that the water may be contaminated with human or animal wastes. Microbes in these wastes may cause short term effects, such as diarrhea, cramps, nausea, headaches, or other symptoms. They may pose a special health risk for infants, young children, and people with severely compromised immune systems.	Human and animal fecal waste	zero ⁶

LEGEND

+ DISINFECTANT

MICROORGANISM

	Contaminant	MCL or TT ¹ (mg/L) ²	Potential health effects from long-term ³ exposure above the MCL	Common sources of contaminant in drinking water	Public Health Goal (mg/L)²
ిర్ధిం	Fluoride	4.0	Bone disease (pain and tenderness of the bones); children may get mottled teeth	Water additive which promotes strong teeth; erosion of natural deposits; discharge from fertilizer and aluminum factories	4.0
	Ciardia lamblia	TT7	Short-term exposure: Gastrointestinal illness (e.g., diarrhea, vomiting, cramps)	Human and animal fecal waste	zero
\bigcirc	Glyphosate	0.7	Kidney problems; reproductive difficulties	Runoff from herbicide use	0.7
A	Haloacetic acids (HAA5)	0.060	Increased risk of cancer	Byproduct of drinking water disinfection	n/aº
\bigcirc	Heptachlor	0.0004	Liver damage; increased risk of cancer	Residue of banned termiticide	zero
\bigcirc	Heptachlor epoxide	0.0002	Liver damage; increased risk of cancer	Breakdown of heptachlor	zero
	Heterotrophic plate count (HPC)	TT7	HPC has no health effects; it is an analytic method used to measure the variety of bacteria that are common in water. The lower the concentration of bacteria in drinking water, the better maintained the water system is.	HPC measures a range of bacteria that are naturally present in the environment	n/a
\bigcirc	Hexachlorobenzene	0.001	Liver or kidney problems; reproductive difficulties; increased risk of cancer	Discharge from metal refineries and agricultural chemical factories	zero
\bigcirc	Hexachloro- cyclopentadiene	0.05	Kidney or stomach problems	Discharge from chemical factories	0.05
ిర్ధిం	Lead	TT⁵; Action Level=0.015	Infants and children: Delays in physical or mental development; children could show slight deficits in attention span and learning abilities; Adults: Kidney problems; high blood pressure	Corrosion of household plumbing systems; erosion of natural deposits	zero
	Legionella	TT7	Legionnaire's Disease, a type of pneumonia	Found naturally in water; multiplies in heating systems	zero
\bigcirc	Lindane	0.0002	Liver or kidney problems	Runoff/leaching from insecticide used on cattle, lumber, and gardens	0.0002
ిర్తం	Mercury (inorganic)	0.002	Kidney damage	Erosion of natural deposits; discharge from refineries and factories; runoff from landfills and croplands	0.002
\bigcirc	Methoxychlor	0.04	Reproductive difficulties	Runoff/leaching from insecticide used on fruits, vegetables, alfalfa, and livestock	0.04
ංරිං	Nitrate (measured as Nitrogen)	10	Infants below the age of six months who drink water containing nitrate in excess of the MCL could become seriously ill and, if untreated, may die. Symptoms include shortness of breath and blue-baby syndrome.	Runoff from fertilizer use; leaching from septic tanks, sewage; erosion of natural deposits	10

DISINFECTANT

ঙ্গ

÷

MICROORGANISM

RADIONUCLIDES

National Primary Drinking Water Regulations

Contaminant	MCL or TT ¹ (mg/L) ²	Potential health effects from long-term ³ exposure above the MCL	Common sources of contaminant in drinking water	Public Health Goal (mg/L) ²
Nitrite (measured as Nitrogen)	1	Infants below the age of six months who drink water containing nitrite in excess of the MCL could become seriously ill and, if untreated, may die. Symptoms include shortness of breath and blue-baby syndrome.	Runoff from fertilizer use; leaching from septic tanks, sewage; erosion of natural deposits	1
Oxamyl (Vydate)	0.2	Slight nervous system effects	Runoff/leaching from insecticide used on apples, potatoes, and tomatoes	0.2
Pentachlorophenol	0.001	Liver or kidney problems; increased cancer risk	Discharge from wood-preserving factories	zero
Picloram	0.5	Liver problems	Herbicide runoff	0.5
Polychlorinated biphenyls (PCBs)	0.0005	Skin changes; thymus gland problems; immune deficiencies; reproductive or nervous system difficulties; increased risk of cancer	Runoff from landfills; discharge of waste chemicals	zero
Radium 226 and Radium 228 (combined)	5 pCi/L	Increased risk of cancer	Erosion of natural deposits	zero
炎 Selenium	0.05	Hair or fingernail loss; numbness in fingers or toes; circulatory problems	Discharge from petroleum and metal refineries; erosion of natural deposits; discharge from mines	0.05
Simazine	0.004	Problems with blood	Herbicide runoff	0.004
Styrene	0.1	Liver, kidney, or circulatory system problems	Discharge from rubber and plastic factories; leaching from landfills	0.1
Tetrachloroethylene	0.005	Liver problems; increased risk of cancer	Discharge from factories and dry cleaners	zero
ဆို Thallium	0.002	Hair loss; changes in blood; kidney, intestine, or liver problems	Leaching from ore-processing sites; discharge from electronics, glass, and drug factories	0.0005
Toluene	1	Nervous system, kidney, or liver problems	Discharge from petroleum factories	1
Total Coliforms	5.0 percent ⁸	Coliforms are bacteria that indicate that other, potentially harmful bacteria may be present. See fecal coliforms and <i>E. coli</i>	Naturally present in the environment	zero
Total Trihalomethanes (TTHMs)	0.080	Liver, kidney, or central nervous system problems; increased risk of cancer	Byproduct of drinking water disinfection	n/aº
Toxaphene	0.003	Kidney, liver, or thyroid problems; increased risk of cancer	Runoff/leaching from insecticide used on cotton and cattle	zero
2,4,5-TP (Silvex)	0.05	Liver problems	Residue of banned herbicide	0.05
1,2,4- Trichlorobenzene	0.07	Changes in adrenal glands	Discharge from textile finishing factories	0.07

LEGEND

+ DISINFECTANT

MICROORGANISM

National Primary Drinking Water Regulations

EPA 816-F-09-004 | MAY 2009

Contaminant	MCL or TT ¹ (mg/L) ²	Potential health effects from long-term ³ exposure above the MCL	Common sources of contaminant in drinking water	Public Health Goal (mg/L)²			
I,1,1- Trichloroethane	0.2	Liver, nervous system, or circulatory problems	Discharge from metal degreasing sites and other factories	0.2			
1,1,2- Trichloroethane	0.005	Liver, kidney, or immune system problems	Discharge from industrial chemical factories	0.003			
Trichloroethylene	0.005	Liver problems; increased risk of cancer	Discharge from metal degreasing sites and other factories	zero			
Turbidity	Π7	Turbidity is a measure of the cloudiness of water. It is used to indicate water quality and filtration effectiveness (e.g., whether disease- causing organisms are present). Higher turbidity levels are often associated with higher levels of disease-causing microorganisms such as viruses, parasites, and some bacteria. These organisms can cause short term symptoms such as nausea, cramps, diarrhea, and associated headaches.	Soil runoff	n/a			
Uranium	30µg/L	Increased risk of cancer, kidney toxicity	Erosion of natural deposits	zero			
Vinyl chloride	0.002	Increased risk of cancer	Leaching from PVC pipes; discharge from plastic factories	zero			
Viruses (enteric)	Π ⁷	Short-term exposure: Castrointestinal illness (e.g., diarrhea, vomiting, cramps)	Human and animal fecal waste	zero			
Xylenes (total)	10	Nervous system damage	Discharge from petroleum factories; discharge from chemical factories	10			
LEGEND DISINFECTANT DISINFECTION DISINFECT							

NOTES

1 Definitions

- Maximum Contaminant Level Goal (MCLG): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLCs allow for a margin of safety and are non-enforceable public health goals.
- Maximum Contaminant Level (MCL): The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to MCLGs as feasible using the best available treatment technology and taking cost into consideration. MCLs are enforceable standards.
- Maximum Residual Disinfectant Level Goal (MRDLG): The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.
- Maximum Residual Disinfectant Level (MRDL): The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.
- Treatment Technique (TT): A required process intended to reduce the level of a contaminant in drinking water.

2 Units are in milligrams per liter (mg/L) unless otherwise noted. Milligrams per liter are equivalent to parts per million (ppm).

- 3 Health effects are from long-term exposure unless specified as short-term exposure.
- 4 Each water system must certify annually, in writing, to the state (using third-party or manufacturers certification) that when it uses acrylamide and/or epichlorohydrin to treat water, the combination (or product) of dose and monomer level does not exceed the levels specified, as follows: Acrylamide = 0.05 percent dosed at 1 mg/L (or equivalent); Epichlorohydrin = 0.01 percent dosed at 20 mg/L (or equivalent).
- 5 Lead and copper are regulated by a Treatment Technique that requires systems to control the corrosiveness of their water. If more than 10 percent of tap water samples exceed the action level, water systems must take additional steps. For copper, the action level is 1.3 mg/L, and for lead is 0.015 mg/L.
- 6 A routine sample that is fecal coliform-positive or E. coli-positive triggers repeat samplesif any repeat sample is total coliform-positive, the system has an acute MCL violation. A routine sample that is total coliform-positive and fecal coliform-negative or E. colinegative triggers repeat samples--if any repeat sample is fecal coliform-positive or E. coli-positive, the system has an acute MCL violation. See also Total Coliforms.

7 EPA's surface water treatment rules require systems using surface water or ground water under the direct influence of surface water to (1) disinfect their water, and (2) filter their water or meet criteria for avoiding filtration so that the following contaminants are controlled at the following levels:

Cryptosporidium: 99 percent removal for systems that filter. Unfiltered systems are required to include Cryptosporidium in their existing watershed control provisions.

- Ciardia lamblia: 99.9 percent removal/inactivation
- Viruses: 99.9 percent removal/inactivation
- Legionella: No limit, but EPA believes that if Giardia and viruses are removed/ inactivated, according to the treatment techniques in the surface water treatment rule, Legionella will also be controlled.
- Turbidity: For systems that use conventional or direct filtration, at no time can turbidity (cloudiness of water) go higher than 1 nephelometric turbidity unit (NTU), and samples for turbidity must be less than or equal to 0.3 NTU in at least 95 percent of the samples in any month. Systems that use filtration other than the conventional or direct filtration must follow state limits, which must include turbidity at no time exceeding 5 NTU.
 HPC: No more than 500 bacterial colonies per milliliter
- Long Term 1 Enhanced Surface Water Treatment: Surface water systems or ground water systems under the direct influence of surface water serving fewer than 10,000 people must comply with the applicable Long Term 1 Enhanced Surface Water Treatment Rule provisions (e.g. turbidity standards, individual filter monitoring, *Cryptosporidium* removal requirements, updated watershed control requirements for unfiltered systems).
- Long Term 2 Enhanced Surface Water Treatment: This rule applies to all surface water systems or ground water systems under the direct influence of surface water. The rule targets additional *Cryptosporidium* treatment requirements for higher risk systems and includes provisions to reduce risks from uncovered finished water storages facilities and to ensure that the systems maintain microbial protection as they take steps to reduce the formation of disinfection byproducts. (Monitoring start dates are staggered by system size. The largest systems (serving at least 100,000 people) will begin monitoring in October 2006 and the smallest systems (serving fewer than 10,000 people) will not begin monitoring until October 2008. After completing monitoring and determining their treatment bin, systems generally have three years to comply with any additional treatment requirements.)
- Filter Backwash Recycling: The Filter Backwash Recycling Rule requires systems that recycle to return specific recycle flows through all processes of the system's existing conventional or direct filtration system or at an alternate location approved by the state
- 8 No more than 5.0 percent samples total coliform-positive in a month. (For water systems that collect fewer than 40 routine samples per month, no more than one sample can be total coliform-positive per month.) Every sample that has total coliform must be analyzed for either fecal coliforms or E. coli. If two consecutive TC-positive samples, and one is also positive for E. coli or fecal coliforms, system has an acute MCL violation.
- 9 Although there is no collective MCLG for this contaminant group, there are individual MCLGs for some of the individual contaminants:
 Haloacetic acids: dichloroacetic acid (zero); trichloroacetic acid (0.3 mg/L)
 - Haloacetic acids: dichloroacetic acid (zero); trichloroacetic acid (0.3 mg// Trihalomethanes: bromodichloromethane (zero); bromoform (zero); dibromochloromethane (0.06 mg/L)

NATIONAL SECONDARY DRINKING WATER REGULATION

National Secondary Drinking Water Regulations are non-enforceable guidelines regarding contaminants that may cause cosmetic effects (such as skin or tooth discoloration) or aesthetic effects (such as taste, odor, or color) in drinking water. EPA recommends secondary standards to water systems but does not require systems to comply. However, some states may choose to adopt them as enforceable standards.

Contaminant	Secondary Maximum Contaminant Level
Aluminum	0.05 to 0.2 mg/L
Chloride	250 mg/L
Color	15 (color units)
Copper	1.0 mg/L
Corrosivity	Noncorrosive
Fluoride	2.0 mg/L
Foaming Agents	0.5 mg/L
Iron	0.3 mg/L
Manganese	0.05 mg/L
Odor	3 threshold odor number
рН	6.5-8.5
Silver	0.10 mg/L
Sulfate	250 mg/L
Total Dissolved Solids	500 mg/L
Zinc	5 mg/L

FOR MORE INFORMATION ON EPA'S SAFE DRINKING WATER:

visit: epa.gov/safewater

call: (800) 426-4791

ADDITIONAL INFORMATION:

To order additional posters or other ground water and drinking water publications, please contact the National Service Center for Environmental Publications at: **(800) 490-9198**, or email: **nscep@bps-Imit.com**.

Built Environment Testing

Report for:

Paul Boblak, Miora Bratian HOH Water Technology 500 S Vermont St. Palatine, IL 60067

Regarding:

Eurofins Built Environment Testing Central, LLC Project: 477653; CATCO CN1005393-O'Hare TERMINAL 3 EML ID: 3959010

Approved by:

Laboratory Manager Itzel Cuellar

Dates of Analysis: Legionella-CDC method: 03-05-2025

Service SOPs: Legionella-CDC method (EB-BT-S-1045) AIHA LAP, LLC accredited service, Lab ID #176641

All samples were received in acceptable condition unless noted in the Report Comments portion in the body of the report. Due to the nature of the analyses performed, field blank correction of results is not applied. The results relate only to the samples as received and tested.

Eurofins Built Environment Testing Central, LLC ("the Company"), a member of the Eurofins Built Environment Testing group of companies, shall have no liability to the client or the client's customer with respect to decisions or recommendations made, actions taken or courses of conduct implemented by either the client or the client's customer as a result of or based upon the Test Results. In no event shall the Company be liable to the client with respect to the Test Results except for the Company's own willful misconduct or gross negligence nor shall the Company be liable for incidental or consequential damages or lost profits or revenues to the fullest extent such liability may be disclaimed by law, even if the Company has been advised of the possibility of such damages, lost profits or lost revenues. In no event shall the Company's liability with respect to the Test Results exceed the amount paid to the Company by the client therefor.

Eurofins Built Environment Testing Central, LLC's LabServe® reporting system includes automated fail-safes to ensure that all AIHA LAP, LLC quality requirements are met and notifications are added to reports when any quality steps remain pending.

Eurofins Built Environment Testing Central, LLC

1815 West Diehl Road, Suite 800, Naperville, IL 60563 (866) 871-1984 www.eurofinsus.com/Built

Date of Sampling: 02-24-2025 Date of Receipt: 02-24-2025 Date of Report: 03-06-2025

Legionella Summary Sheet:

Sample ID	Location	Analysis Date	Volume Filtered (ml)	Detection Limit (cfu/ml)†	Analytical Sensitivity (cfu/ml)†	Total Legionella (cfu/ml)§	Legionella Detected
2	Potable Airfield L-5	03/05/2025	200	0.1	0.1	ND	ND
3	Potable Airfield L-7	03/05/2025	200	0.1	0.1	ND	ND
4	Potable Airfield L-26	03/05/2025	200	0.1	0.1	ND	ND
5	Potable Airfield L-27	03/05/2025	200	0.1	0.1	ND	ND

ND = None Detected

For water samples, the submitted volume affects dilution factor and limit of detection. A sample volume of at least 200ml is recommended for potable water samples for environments with high-risk populations and some other applications. Guidance on sampling, action thresholds and other relevant information can be found at (https://www.osha.gov) as well as other international, national and local agencies.

Identifiers listed without a data entry were not detected during the course of the analysis for the respective sample.

"Other Legionella species" include, but are not limited to, the following organisms: Legionella anisa, Legionella bozemanii, Legionella dumoffii, Legionella gormanii, Legionella jordanis, Legionellalongbeachae 1 and 2, and Legionella micdadei.

[†] The limit of detection is a raw count of 1 at the lowest dilution plated, represented here as a theoretical detection limit of 1 raw count/ reporting unit x the dilution factor on the lowest dilution plated. The analytical sensitivity is represented as being equal to 1 raw count/ reporting unit x the dilution factor, but on the on the lowest reportable (or countable) dilution plated. A reported value for cfu/unit value of "ND" signifies that the test results did not detect any colony forming units down to the limit of detection.

§ Total CFU/unit has been rounded to two significant figures to reflect analytical precision

QUANTITATIVE LEGIONELLA REPORT

Eurofins Built Environment Testing Central, LLC

1815 West Diehl Road, Suite 800, Naperville, IL 60563 (866) 871-1984 www.eurofinsus.com/Built

Date of Sampling: 02-24-2025 Date of Receipt: 02-24-2025 Date of Report: 03-06-2025

Sample ID:Location	2	2:		3:	4	1:	4	5:
	Potable A	irfield L-5	Potable A	irfield L-7	Potable Ai	rfield L-26	Potable Ai	rfield L-27
Comments (see below)	No	one	No	one	No	one	No	one
Lab ID-Version [‡] :	19665	5115-1	19665	5116-1	19665	5117-1	19665	5118-1
Analysis Date:	03/05/2025		03/05	5/2025	03/05	5/2025	03/05	5/2025
Sample type	Water sample		Water	sample	Water	sample	Water	sample
Volume filtered (ml)	200		20	00	2	00	200	
Reporting Units	1	ml	1	ml	1 ml		1	ml
Detection Limit ⁺	0).1	0).1	0).1	0).1
Analytical Sensitivity†	0).1	C).1	().1	0).1
	raw ct.	cfu*/unit	raw ct.	cfu*/unit	raw ct.	cfu*/unit	raw ct.	cfu*/unit
L. pneumophila serotype 1								
L. pneumophila serotype 2-15								
Other Legionella species								
§TOTAL Legionella	ND	ND	ND	ND	ND	ND	ND	ND

*cfu = colony forming units ND = none detected **Comments:**

For water samples, the submitted volume affects dilution factor and limit of detection. A sample volume of at least 200ml is recommended for potable water samples for environments with high-risk populations and some other applications. Guidance on sampling, action thresholds and other relevant information can be found at (https://www.osha.gov) as well as other international, national and local agencies.

Identifiers listed without a count or data entry were not detected during the course of the analysis for the respective sample.

"Other Legionella species" include, but are not limited to, the following organisms: Legionella anisa, Legionella bozemanii, Legionella dumoffii, Legionella gormanii, Legionella jordanis, Legionella longbeachae 1 and 2, and Legionella micdadei.

[†] The limit of detection is a raw count of 1 at the lowest dilution plated, represented here as a theoretical detection limit of 1 raw count/ reporting unit x the dilution factor on the lowest dilution plated. The analytical sensitivity is represented as being equal to 1 raw count/ reporting unit x the dilution factor, but on the on the lowest reportable (or countable) dilution plated. A reported value for cfu/unit value of "ND" signifies that the test results did not detect any colony forming units down to the limit of detection.

§ Total CFU/unit has been rounded to two significant figures to reflect analytical precision.

QUANTITATIVE LEGIONELLA REPORT PROJECT ANALYST AND SIGNATORY REPORT

Project Analyst

Analyst: Joseph Devereux

Eurofins Built Environment Testing Central, LLC

1815 West Diehl Road, Suite 800, Naperville, IL 60563 (866) 871-1984 www.eurofinsus.com/Built

Date of Sampling: 02-24-2025 Date of Receipt: 02-24-2025 Date of Report: 03-06-2025

The test report shall not be reproduced except in full, without written approval of the laboratory. The report must not be used by the client to claim product certification, approval, or endorsement by AIHA LAP, LLC, or any agency of the federal government. The Company reserves the right to dispose of all samples after a period of thirty (30) days, according to all state and federal guidelines, unless otherwise specified.

[‡] A "Version" indicated by -"x" after the Lab ID# with a value greater than 1 indicates a sample with amended data. The revision number is reflected by the value of "x".

Eurofins Built Environment Testing Central, LLC

EMLab ID: 3959010, Page 4 of 4

March 6, 2025

Mr. Joseph Shirley Operations Manager O'Hare Terminal 5 10000 West O'Hare Dr. Chicago, IL 60666

Subject: T5 Airfield Potable Water Biological & Water Screening Results

Dear Mr. Shirley,

Recently, thirty-two (32) potable waters were sampled to test for microbiological levels and general water screening chemistry. Potable water piping & equipment can harbor microbiology of public health concern. To address these concerns, the EPA has created the National Primary Drinking Water Regulations, which are attached for your reference. Additionally, there are standards for controlling Legionellosis written by multiple industry organizations and there are OSHA regulations regarding the presence of *Legionella* bacteria; including action levels and appropriate responses for bacteria counts at or above 10 CFU/ml and EPA's MCL goal of zero.

The test results performed on the potable water samples collected are attached for your review, which includes the following list.

- WATER SCREENING ANALYSES 40+ Properties, Cations, Anions
- (including Turbidity & Conductivity)
- FREE CHLORINE ANALYSES
- *LEGIONELLA* BACTERIA ANALYSES
- HETEROTROPHIC AEROBIC BACTERIA COLONY PLATE COUNT at 72 F (22C)
- HETEROTROPHIC AEROBIC BACTERIA COLONY PLATE COUNT at 99 F (37C)
- HETEROTROPHIC ANAEROBIC BACTERIA COLONY PLATE COUNT
- PSEUDOMONAS AERUGINOSA ANALYSES
- COLIFORMS (TOTAL COLIFORMS) ANALYSES
- ESCHERICHIA COLI (E COLI) ANALYSES
- ENTEROCOCCI (FEACAL STREPTOCOCCI) ANALYSES

Please review the test result reports that are attached and compare them to your requirements.

Where Water Works.

These parameters below form the basis of some of your requirements, based on IATAmandated parameters, OSHA & EPA's National Primary Drinking Water Regulations...

PARAMETERS	LINE# ON REPORT	LIMITS
рН	11	6.5 to 9.5
Barium	19	< 2 ppm
Chromium	21	< 0.1 ppm
Copper	22	< 1.3 ppm
Lead	24	< 0.015 ppm
Fluoride	40	< 4 ppm
Nitrate as N	44	< 10 ppm
Nitrite as N	45	< 1 ppm
Heterotrophic Aerobic Bacteria	72	< 500 CFU/mL
Colony Plate Count At 72 F (22c)		
Heterotrophic Aerobic Bacteria	73	< 100 CFU/mL IATA; < 500 CFU /
Colony Plate Count At 99 F (37c)		mL EPA
Heterotrophic Anaerobic Bacteria	74	< 500 CFU/mL
Colony Plate Count		
Coliforms (Total Coliforms)	80	<5% of samples/One sample Max.
Escherichia Coli (E Coli)	82	< 1 CFU/mL
Enterococci (Feacal Streptococci)	83	< 1 CFU/mL
Pseudomonas Aeruginosa	84	< 100 CFU/mL
Turbidity	88	< 1 NTU
Free Chlorine as CL ₂	94	0.3 to 0.8 ppm; 4ppm Max.
Lagionalla Bactoria	-	< 10 CFU/mL OSHA; No limit
Legionella Dacteria		EPA; Zero Public Health Goal EPA

<u>RESULTS</u>

Based on the Regulations & Guidelines, the water levels tested are within limits or under the Maximum Contaminant Level (MCL), except for the notes below. These systems are considered to have generally effective water system conditions and maintenance, although with some more maintenance recommended.

The M-4 Pseudomonas Aeruginosa was above the IATA range. Action was taken to flush the location and retest. The retest shows the level within range. This location is recommended for more manual flushing, especially if water usage will be low here. Thank you for the opportunity to be of service. If you have any questions, please contact me at your earliest convenience.

Sincerely,

HOH WATER TECHNOLOGY, INC.

Faul A. Boblak

Paul A. Boblak, Lead Water Quality Engineer, CWT

DATE:	3/3/2025
TO:	Paul Boblak
FROM:	Andrew Adamsky
SUBJECT:	CATCO O'Hare International Airport, Terminal 5 Chicago, IL Analysis of domestic waters.

Dear Paul:

Attached you will find our laboratory analysis reports pertaining to the above referenced samples our laboratory number 60878.

I hope this information satisfies your requirements. If any further work or discussion is needed, please get back to me.

Very truly yours, *Andrew Adamsky* Andrew Adamsky

AA Enclosure

Where Water Works.. hohwatertechnology.com | 0 (800) 577-2211

			LAE	BORAT	ORY RE	PORT -	WATER	ANALYS	SIS	Customer	No.:	1005393
			Regarding: (CATCO		Report N Report D		.: .:	60878			
	WATER		Location: (D'Hare I	nternation		Report Da	ate:	3/3/25			
	TECHNO	LOGY	(Chicado	IL					Login Dat	e:	2/25/25
	т			ornougo						Sample D	o.	1/27/25
E00 2	Pouth Varrage Office											1/21/25
500 t	South Vermont Street											
(800)	577-2211		M2/	3	М	4	M	5	N	/16	М	7
(000) Eav:	(017) 250 7002											
гах.	(047) 330-7002		Soluble	Insoluble	Soluble	Insoluble	Soluble	Insoluble	Soluble	Insoluble	Soluble	Insoluble
1	Alkalinity ("P")	as CaCO ₃	0	moolable	0	moorable	0		0		0	
	Alkalinity ("M")	as CaCO.	117		121		117		114		116	
2	Alkalinity ("OH") (coloulated)	as CaCO ₃			121						110	
w 4		as CaCO ₃										
a 5	Chemical Oxygen Demar	d(COD)	0		2		0		0		0	
t 6	Chloroform Extractables	ia (010121)										
e 7	Dissolved Solids		207		207		209		209		209	
r 8	Hardness (Calcium)	as CaCO ₃	95		96		96		96		96	
g	Hardness (Magnesium)	as CaCO ₃	53		53		53		53		53	
P 10	Hardness (Total)	as CaCO ₃	148		149		149		149		149	
r 11	. pH		7.7		7.7		7.7		7.7		7.7	
12	Refractive Index											
o 13	Specific Conductance	µmhos/cm	314		315		317		318		317	
p 14	Specific Gravity	g/ml				0.0					-	
e 15	Total Increasia Casta			1.0		0.0		0.5		0.0		0.0
16	Total Organic Carbon											
r 19		as Al	0.00		0.02		0.01		0.01		0.00	
t 10	Barium	as Ba	0.00		0.02		0.01		0.01		0.00	
i 20	Calcium	as Ca	38.1		38.3		38.3		38.3		38.4	
e`21	Chromium	as Cr	0.00		0.00		0.00		0.00		0.00	
s 22		as Cu	0.00		0.00		0.00		0.00		0.00	
23	Iron	as Fe	0.00		0.00		0.00		0.00		0.01	
24	Lead	as Pb	0.001		0.002		0.000		0.000		0.000	
25	Lithium	as Li	0.00		0.00		0.00		0.00		0.00	
26	. Magnesium	as Mg	12.9		13.0		13.0		13.0		12.9	
27	Manganese	as Mn	0.00		0.00		0.00		0.00		0.00	
28	Nickel	as Ni	0.00		0.00		0.00		0.00		0.00	
29	. Potassium	as K	1.71		1.68		1.69		1.65		1.66	
30	. Silver	as Ag	0.00		0.00		0.00		0.00		0.00	
C 31	. Sodium	as Na	9.25		9.27		9.32		9.35		9.33	
a 32	Strontium	as Sr	0.14		0.14		0.14		0.13		0.14	
t 33	. Zinc	as Zn	0.03		0.02		0.03		0.03		0.03	
0 34	Total Cation Millequivaler	nts	3.247		3.270		3.269		3.269		3.268	
n 35	Acetate	as C ₂ H ₃ O ₂	0.00		0.04		0.00		0.00		0.00	
s 36	Bromide	as Br	0.00		0.00		0.00		0.00		0.00	
37	Chloride	as Cl	16.0		15.8		16.0		16.1		16.0	
38	. Chlorate	as CIO ₃	0.00		0.00		0.00		0.00		0.00	
39	. Chromate	as CrO ₄									-	
40	I Fluoride	as F	0.76		0.76		0.75		0.74		0.75	
41	. Formate	as CHO ₂	0.02		0.02		0.01		0.00		0.00	
42		as C ₂ H ₃ O ₃	0.00		0.00		0.00		0.00		0.00	
43			0.00		0.00		0.00		0.00		0.00	
44			1.20		1.19		1.18		1.17		1.21	
45			0.00		0.00		0.00		0.00		0.00	
40	Phoenbata (ortho)	as 0204	1 10		1.00		1.00		1.00		1 1 1	
4/		as P	53.0 53.0		02.1		0.10		0.62		0.63	
A _⊿o	Propionate	as C ₂ H ₂ O ₂	0.03		0.00		0.04		0.03		0.03	
n 50	Sulfamate	as NH ₂ SO ₂	0.00		0.00		0.00		0.00		0.00	
i 51	. Sulfate	as SO₄	26.8		26.7		26.8		26.7		26.7	
n 52	. Sulfur (total)	as S	9.59		9.58		9.51		9.48		9.43	
s 53	Total Anion Millequivalen	ts	3.501		3.572		3.497		3.447		3.486	
54	Ammonia	as NH ₃										
55	Benzotriazole	as C ₆ H ₅ N ₃										
56	Boron	as B	0.15		0.11		0.08		0.06		0.05	
57	Silica	as SiO ₂	2.31		2.31		2.32		2.30		2.31	
	Sodium Nitrite	as NaNO ₂										
58		-							· · · · · · · · · · · · · · · · · · ·	1 /	· · · · · · · · · · · · · · · · · · ·	
58 59	Sodium Sulfite	as Na ₂ SO ₃										

				LA	BORAT	ORY RE	PORT -	WATER	ANALYS	SIS	Custome	r No.:	1005393
		WATER		Regarding	CATCO						Report N	0.:	60878
		TECHNOL	.OGY	Location:	O'Hare Ir	nternation	al Airport	, Termina	15		Report D	ate:	3/3/25
		U 34			Chicago,	IL					Login Da	te:	2/25/25
											Sample D	Date:	1/27/25
50	0 5	outh Vermont Street	1										
Pa	alatir												
(8	00)	577-2211		M	2/3	N	4	M	15	N	16	N	/17
Èa	ax: (8	847) 358-7082											
	``	,		Soluble	Insoluble	Soluble	Insoluble	Soluble	Insoluble	Soluble	Insoluble	Soluble	Insoluble
	61.	Bromate	as BrO ₃										
с	62.	Chlorite	as CIO ₂										
0	63.	Cyclohexylamine*	as C ₆ H ₁₃ N										
m	64.	Diethylamine*	as C ₄ H ₁₁ N										
p	65.	Diethylaminoethanol*	as C ₆ H ₁₅ NO										
u	66.	Ethylamine*	as C ₂ H ₇ N										
n	67.	Morpholine*	as C_4H_9NO										
d	68.	Diethylene Glycol*	% by volume	9									
s	69.	Ethylene Glycol*	% by volume	2									
	70.	Propylene Glycol*	% by volume	9									
	71.	Methanol*	% by volume	\$									
M		Heterotrophic Plate Count		ND		ND		ND		ND		ND	1
	72.	@ 22°C(Aerobic)	CFU/ml										
r		Heterotrophic Plate Count		9		ND		2		ND		ND	1
0	73.	@ 37°C(Aerobic)	CFU/ml	•				_					
b		Heterotrophic Plate Count	CFU/ml	ND		ND		ND		ND		ND	1
	74.	(Anaerobic)	0511/										
I	75.	Denitrifying Bacteria	CFU/ml										
o	76.	Fecal Coliform	CFU/100 ml										
g	77.	Iron Bacteria	CFU/mi										
	78.	VIOIO Sulfata Daduaara	CFU/mi										
a	79.	Sulfate Reducers	CFU/mi	.1		-1		.4		.4		.1	
Т	80.	Veget	CFU/100 mi	<1		<1		<1		<1		<1	
	01.	E Coli	CFU/III	-1		-1		-1		-1			
	82.	Entereseei	CF0/100 mi	<1		<1		<1		<1		<1	
			MPN/100 m	<1		<1		<1		<1		<1	1
-	03.	Regudemence Acruginese	MDN/100 m	-1		140	<1 on 3/3	-1		-1			
	95	Residue by Evaporation	IVIE IN/ TOO III			140	\$10110/0	~ 1					
	86	Volatile Solids											
	87	System Canacity	dal										
	88	Turbidity	NTU	0 15		0 12		0 15		0 17		0.25	
	89.	P.T.S.A.	daa										
	90.	Dissolved Oxvaen	as O ₂										
	91.	DEHA	ppb										
	92.	Erythorbic Acid	ppb										
	93.	Fluorescein	ppb										
	94.	Chlorine (free)	as Cl ₂	1.11		1.06		1.14		1.14		1.04	
	95.	Sulfide	as S ⁻²										
	96.	Arsenic	as As										
	97.	Mercury	as Hg										
	98.	Nitrate-Nitrite Nitrogen	as N										
	99.	Nitrate Nitrogen	as N										
	100.	Nitrite Nitrogen	as N										
	101.	Phosphonate											[
										<u> </u>			
		1		L	I								

LEH All data except pH in parts per million or as indicated

Number Number Registing Registing <thregisting< th=""> <thregist< th=""><th></th><th></th><th>_</th><th></th><th>LA</th><th>BORAT</th><th>ORY RE</th><th>PORT -</th><th>WATER</th><th>ANALY</th><th>SIS</th><th>Customer</th><th>No.:</th><th>1005393</th></thregist<></thregisting<>			_		LA	BORAT	ORY RE	PORT -	WATER	ANALY	SIS	Customer	No.:	1005393
Example Discrete Character Character Character Character Character Report Data: 2225/22 500 South Verront Street Palatine, L. 60007 (200) 577-2211 Sample Date: 1/27/22 Sample Date: 1/27/22 1 Makein V. 107 as Caractor Image: Sample Date: 1/27/22 1 Makein V. 107 as Caractor Image: Sample Date: 1/27/22 1 Makein V. 107 as Caractor Image: Sample Date: 1/27/22 1 Makein V. 107 as Caractor Image: Sample Date: 1/27/22 1 Makein V. 107 as Caractor Image: Sample Date: 1/27/22 1 Makein V. 107 as Caractor Image: Sample Date: 1/27/22 1 Makein V. 107 as Caractor Image: Sample Date: 1/27/22 1 Makein V. 107 as Caractor Image: Sample Date: 1/27/22 1 Makein V. 107 as Caractor Image: Sample Date: 1/27/22 1 Makein V. 107 as Caractor Image: Sample Date: 1/27/22 </td <td></td> <td></td> <td></td> <td></td> <td>Regarding:</td> <td>CATCO</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Report No</td> <td>).:</td> <td>60878</td>					Regarding:	CATCO						Report No).:	60878
Chicago, IL Login Date: 22522 500 South Vermont Street Patistrie, IL Gobolf (400) 577-2211 M8 M0 M10111 M14 M15 5xx1 (847) 358-7082 Southe I reacted: Sou	Ŀ		WATER		Location:	O'Hare I	nternation	al Airport	t, Termina	l 5		Report Da	ate:	3/3/25
Son South Vermant Street Paterine, L. 60007 (200) 577-2211 M8 M9 M1011 M14 M15 Fax: (47) 358-7082 Statute Incatale Incatale Statute Incatale Statute Incatale Statute Incatale Statute Incatale Statute Incatale Incatale Statute Incatale			TECHNOI	LOGY		Chicago	, IL					Login Dat	e:	2/25/25
BOB South Yermond Strete (BOD S77-2211 M8 M0 M10'11 M14 M15 Fax: (847) 358-7022 50.00 50.00 1molube 1mo			TX				,					Sample D	ate:	1/27/25
Mail M8 M9 M1011 M14 M15 Fax: (47) 358-7082 50.00 100.00 0	50	2 01	outh Vermont Street											.,,
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	P	alati	ne II 60067											
Fax: (847) 358-7082 South Incode So	(8	00)	577-2211		M	18	N	19	M10	0/11	M	14	М	15
I. Akalamiy (P)* Batha Insukte Southe Southe	Fa	ax: (847) 358-7082											
I 1. Ablalinity (P) as CaCO. 0 0 0 0 0 2. Ablalinity (P) as CaCO. 117 117 118 116 116 4. Ablainity (P) as CaCO. 117 117 118 116 116 4. Free Mineral Actify as CaCO. 5 0 0 0 1 5. Chornical Corgen Domand (C.O.D.) 5 0 0 0 1 1 6. Chornical Column as CaCO. 64 83 63 83 83 7. Dissolved Solids 209 208 209 208 86 94 96 96 10. Hardmess (Total) as CaCO. 64 83 63 83 83 71 149 77			,		Soluble	Insoluble	Soluble	Insoluble	Soluble	Insoluble	Soluble	Insoluble	Soluble	Insoluble
i Abalanity (M*) as CaCO ₀ 117 118 115 115 i Abalanity (M*) as CaCO ₀ i i		1.	Alkalinity ("P")	as CaCO ₃	0		0		0		0		0	
s A Halamity (CPU) successes) as CaCO ₂ s S		2.	Alkalinity ("M")	as CaCO ₃	117		117		118		115		115	
vi 4. Free Mineal Acidity as CACO, as Chonordom Extractables		3.	Alkalinity ("OH") (calculated)	as CaCO ₃										
s 5. Chemical Oxgen Demand (C.O.D.) 5 0 0 0 0 1 s Chemical Dregen Demand (C.O.D.) 209 208 209 209 209 209 s All-Indress Calcular) as CaCO_ 54 53<	w	4.	Free Mineral Acidity	as CaCO ₃										
1 6 Chordnorm Extractables	а	5.	Chemical Oxygen Demand	l (C.O.D.)	5		0		0		0		1	
ef T. Dissolved Solids 209 209 209 90 90 94 95 90 96 94 95 90 96 94 95 96<	t	6.	Chloroform Extractables											
r 8. Hardness (Calcum) as CaCO, as CaCO, r 95 96 94 95 96 9. Hardness (Total) as CaCO, as CaCO, r r	е	7.	Dissolved Solids		209		208		209		209		209	
s Hardmess (Magnesium) as CaCO, as CaCO, it between the second s	r	8.	Hardness (Calcium)	as CaCO₃	95		96		94		95		96	
P 16. Hardmisse (Total) as CaCO ₂ 149 147 148 148 149 13. Apecini Conductance 77 7.8 77 7.8 77 7.7 13. Specific Conductance µmmos/cm 318 316 317 317 14. Specific Cravity µmm 0.00 0.00		9.	Hardness (Magnesium)	as CaCO ₃	54		53		53		53		53	
11 12 PART active Index 1/2 PART active Index 1/2 PART active Index 112 Refractive Index 318 316 317 317 317 11 Specific Conductance µmhos/cm 318 316 317 317 317 11 Total Organic Carbon 0.0 0.0 0.00 0.00 0.00 12 Relation as Ca 38.1 38.4 37.7 38.1 39.5 13 Adminum as Ca 38.1 38.4 37.7 38.1 39.5 14 Chronium as Ca 0.00	P	10.	Hardness (Total)	as CaCO ₃	149		149		147		148		149	
1 1	r	11.	pH Defrective Index		7.7		7.6		7.7		7.7		1.1	
i i Specific Caronin, conservation product and the specific Caronin, conservating and the specific Caronin, conserva		12.	Specific Conductance	umhos/cm	318		316		317		317		317	
e 15. Sixgended Solids 0.0 0.0 0.0 0.0 0.0 0.0 16. Total longanic Carbon -	p	14.	Specific Gravity	g/ml			510				0.7		017	
Iso Total Inorganic Carbon Image: Carbon Image: Carbon r Total Carbon Image: Carbon Image: Carbon Image: Carbon r Total Carbon as Ba 0.00 0.00 0.00 0.00 r Total Carbon as Ca 33.1 33.4 37.7 38.1 38.5 e 21. Chromium as Ca 33.1 33.4 37.7 38.1 38.5 e 21. Chromium as Ca 0.00 0.00 0.00 0.00 0.00 24. Lead as FP 0.00 0.00 0.00 0.00 0.00 0.00 25. Magnesium as M 0.00 0.0	e	15.	Suspended Solids	5		0.0		0.0		0.0		0.5		0.0
Image: Total Organic Carbon Image: Image: <thimage:< th=""> Image: Image:</thimage:<>		16.	Total Inorganic Carbon											
r 16. Aluminum as Al 0.00 0.00 0.00 0.00 0.00 i 20. Calcium as Ba 0.02 0.02 0.02 0.02 i 20. Carbonium as Cr 0.00 0.00 0.00 0.00 i 22. Corpor as Cr 0.00 0.00 0.00 0.00 23. Iron as Fe 0.01 0.00 0.00 0.00 0.00 24. Lead as Pb 0.000 0.00 0.00 0.00 0.00 25. Lithium as Li 0.00 0.00 0.00 0.00 0.00 28. Nickela as Ni 0.00 0.00 0.00 0.00 0.00 0.00 28. Sidurn as Ag 0.03 0.02 0.02 0.02 0.01 30. Situr as Ag 0.03 0.02 0.02 0.01 0.00 0.00		17.	Total Organic Carbon											
1 19 Barium as Ba 0.02 0.02 0.02 0.02 20 Calcum as Ca 38.1 38.4 37.7 38.1 38.5 e 21 Calcum as Ca 0.00 0.00 0.00 0.00 22 Coper as Cu 0.00 0.00 0.00 0.00 24 Lead as Pb 0.000 0.00 0.00 0.00 25 Lithium as Li 0.00 0.00 0.00 0.00 26 Magnesium as Mg 13.1 12.9 12.9 12.8 12.9 27 Magnesium as M 0.00 0.00 0.00 0.00 0.00 28 Nickel as Ni 0.00 0.00 0.00 0.00 0.00 0.00 31 Sodium as Ag 0.03 0.02 0.02 0.01 3.3 0.13 0.13 0.13 0.13 0.13 0.13 <	r	18.	Aluminum	as Al	0.00		0.00		0.00		0.00		0.00	
i Display Calcum as Ca 38.1 38.4 37.7 38.1 38.5 s 2.7 Chromium as Ca 0.00 0.00 0.00 0.00 0.00 23. Iron as Fe 0.00 0.00 0.00 0.00 0.00 24. Lead as Pb 0.000 0.00 0.00 0.00 0.00 25. Uthium as Lig 0.00 0.00 0.00 0.00 0.00 26. Magnesium as Mit 0.00 0.00 0.00 0.00 0.00 0.00 28. Nickel as N 0.00 0.	t	19.	Barium	as Ba	0.02		0.02		0.02		0.02		0.02	
a 2.1 Chromum as Cr 0.00 0.00 0.00 0.00 2.2 Copper as Cu 0.00 0.00 0.00 0.00 2.4 Lead as Pb 0.00 0.00 0.00 0.00 2.4 Lead as Pb 0.00 0.00 0.000 0.000 2.4 Lead as Pb 0.00 0.00 0.000 0.000 2.6 Magnesium as Mg 13.1 12.9 12.8 12.9 2.7 Magnesium as Mn 0.00 0.00 0.00 0.00 0.00 2.8 Nickel as Nn 0.00 0.00 0.00 0.00 0.00 3.8 Stornum as Sr 0.13 5dium as Sr 0.13 5dium 3.3 2inc as Zr 0.22 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 <td< td=""><td>i</td><td>20.</td><td></td><td>as Ca</td><td>38.1</td><td></td><td>38.4</td><td></td><td>37.7</td><td></td><td>38.1</td><td></td><td>38.5</td><td></td></td<>	i	20.		as Ca	38.1		38.4		37.7		38.1		38.5	
a 2z Copper as Cu 0.00 0.00 0.00 0.00 23. Iron as Fe 0.00 0.00 0.00 0.00 24. Lead as FP 0.00 0.00 0.00 0.00 25. Lithum as Li 0.00 0.00 0.00 0.00 25. Magnesium as Mg 13.1 12.9 12.9 12.8 12.9 27. Magnesium as Mg 0.00 0.00 0.00 0.00 0.00 28. Nickel as N 0.00 0.00 0.00 0.00 0.00 30. Silver as A 9.42 9.27 9.31 9.27 9.30 33. Zintim as Sr 0.13 0.14 0.13 0.13 0.13 33. Zinta as Cr 0.00 0.00 0.00 0.00 0.00 0.00 34. Catale as Cr 1.3 0.13	e	21.	Chromium	as Cr	0.00		0.00		0.00		0.00		0.00	
isolar isolar isolar isolar isolar 24 Lead as Pe 0.00 0.00 0.00 0.00 25 Lithium as Li 0.00 0.00 0.00 0.00 26 Manganesian as Mi 0.00 0.00 0.00 0.00 28 Nickel as Ni 0.00 0.00 0.00 0.00 28 Nickel as Ni 0.00 0.00 0.00 0.00 29 Patasium as K 1.64 1.61 1.60 1.60 1.60 30 Silver as Ag 0.00 0.00 0.00 0.00 0.00 31 Sodium as Sr 0.13 0.14 0.13 0.13 0.13 33 Zinc as Sr 0.03 0.02 0.02 0.00 0.00 34 fold Cation Millequivalents 32.26 32.37 32.42 32.86 35 Boronide as Cl	s	22.	Copper	as Cu	0.00		0.00		0.00		0.00		0.00	
1/2 Lead as PD 0.000 0.001 0.000 0.002 0.002 25. Lithium as L 0.00 0.00 0.00 0.00 0.00 26. Magnesium as Mg 13.1 12.9 12.8 12.9 27. Magnese as M 0.00 0.00 0.00 0.00 28. Nickel as N 0.00 0.00 0.00 0.00 30. Silver as A 9.42 9.27 9.31 9.27 9.30 32. Strontum as S 0.03 0.02 0.00 0.00 0.00 33. Zinc as Zn 0.03 0.02 0.02 0.02 0.01 34. Total Cation Millequivalents 3.266 3.231 3.242 3.266 35. Actate as CH ₂ 0.00 0.00 0.00 0.00 0.00 36. Chorate as CH ₂ 0.00 0.00 0.00		23.	liron	as re	0.01		0.00		0.00		0.00		0.00	
$\begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 &$		24.	Lithium	as FU	0.000		0.001		0.000		0.002		0.002	
Low Magnesian as Mrg 10.1 12.5 12.5 12.5 12.5 Z7 Magnese as Mi 0.00 0.00 0.00 0.00 28 Nickel as Ni 0.00 0.00 0.00 0.00 29 Potassium as K 16.4 16.1 16.0 16.0 30 Silver as Ag 0.00 0.00 0.00 0.00 31 Sodium as Na 9.42 9.27 9.31 9.27 9.30 32 Strontum as S T 0.03 0.02 0.02 0.02 0.01 34 Total Cation Millequivalents 3.268 3.260 3.231 3.242 3.266 35 Acetate as Cl-1 6.0 15.8 16.0 16.0 15.9 36 Chorate as ClO ₃ 0.00 0.00 0.00 0.00 38 Chorate as ClO ₃ 0.00 0.00 0.00 0.00		20.	Magnesium	as Li as Ma	13.1		12.0		12.00		12.00		12.00	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		20.	Magnesium	as Mn	0.00		0.00		0.00		0.00		0.00	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		27.	Nickel	as Ni	0.00		0.00		0.00		0.00		0.00	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		29.	Potassium	as K	1.64		1.61		1.60		1.60		1.60	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		30.	Silver	as Aq	0.00		0.00		0.00		0.00		0.00	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	c	31.	Sodium	as Na	9.42		9.27		9.31		9.27		9.30	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	а	32.	Strontium	as Sr	0.13		0.14		0.13		0.13		0.13	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	t	33.	Zinc	as Zn	0.03		0.02		0.02		0.02		0.01	
n 35. Acetate as $C_2H_3O_2$ 0.00 0.00 0.00 0.00 0.00 3 B. Bromide as Br 0.00 0.00 0.00 0.00 0.00 0.00 37. Chlorate as Cl 16.0 15.8 16.0 16.0 15.9 38. Chlorate as ClO ₃ 0.00 0.00 0.00 0.00 0.00 39. Chromate as ClO ₃ 0.00 0.00 0.00 0.00 0.00 40. Fluoride as CH ₂ 0.02 0.01 0.00 0.00 0.00 41. Formate as CH ₂ 0.02 0.01 0.00 0.00 0.00 42. Glycolate as Ch ₂ 0.02 0.01 0.00 0.00 0.00 44. Nitrate as NO ₂ 0.00 0.00 0.00 0.00 0.00 45. Nitrite as NO ₂ 0.00 0.00 0.00 0.00 0.00 46. Oxalate as C ₃ /4, O.00 0.00 0.00 0.00<	0	34.	Total Cation Millequivalent	s	3.268		3.260		3.231		3.242		3.266	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	n	35.	Acetate	as $C_2H_3O_2$	0.00		0.00		0.00		0.00		0.00	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	s	36.	Bromide	as Br	0.00		0.00		0.00		0.00		0.00	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		37.	Chloride	as Cl	16.0		15.8		16.0		16.0		15.9	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		38.	Chlorate	as CIO ₃	0.00		0.00		0.00		0.00		0.00	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		39.	Chromate	as CrO ₄										
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		40.		as F	0.75		0.74		0.74		0.74		0.75	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		41.	Chronie		0.02		0.01		0.00		0.00		0.00	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		42.	Molybdato	as U ₂ H ₃ U ₃	0.00		0.00		0.00		0.00		0.00	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		43.	Nitrate		1.00		0.00		0.00		0.00		0.00	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		44. 15	Nitrite	as NO.	0.00		0.00		0.00		0.00		0.00	
A. B. Society as $0_2 0_4$ 0.00 0.00 0.00 0.00 0.00 47. Phosphate (ortho) as PO_4 1.11 1.10 1.11 1.16 1.14 48. Phosphorus (total) as P 0.63 0.63 0.62 0.62 0.64 49. Propionate as $C_3H_5O_2$ 0.00 0.00 0.00 0.00 0.00 50. Sulfamate as NH_2SO_3 0.00 0.00 0.00 0.00 0.00 51. Sulfate as SO_4 26.8 26.5 26.7 26.8 26.7 53. Total Anion Millequivalents 3.492 3.488 3.506 3.459 3.457 54. Armonia as NH_3 55. Benzotriazole as SiO_2 2.27 2.33 2.27 2.27 2.29 58. Sodium Nitrite as NaO_2 59. Sodium Sulfite as Na_2SO_3 60. Tolytriazole as $C_7H_7N_3$		40. 46	Oxalate	as $C_{c}\Omega_{c}$	0.00		0.00		0.00		0.00		0.00	
A H Hosphate (onlo) as P_4 Hill Hill<		40.	Phosphate (ortho)	as PO ₄	1 11		1 10		1 11		1 16		1 14	
A 40. Propinate (star) as $C_3H_5O_2$ 0.00 0.00 0.00 0.00 0.00 n 50. Sulfamate as NH_2SO_3 0.00 0.00 0.00 0.00 0.00 50. Sulfamate as SO_4 26.8 26.5 26.7 26.8 26.7 51. Sulfar as SO_4 26.8 26.5 26.7 26.8 26.7 52. Sulfur (total) as S 9.46 9.44 9.25 9.30 9.41 53. Total Anion Millequivalents 3.492 3.488 3.506 3.459 3.457 54. Ammonia as NH_3		48	Phosphorus (total)	as P	0.63		0.63		0.62		0.62		0.64	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	A	49.	Propionate	as C ₃ H ₅ O ₂	0.00		0.00		0.00		0.00		0.00	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	n	50.	Sulfamate	as NH ₂ SO ₃	0.00		0.00		0.00		0.00		0.00	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	i	51.	Sulfate	as SO₄	26.8		26.5		26.7		26.8		26.7	
s 53. Total Anion Millequivalents 3.492 3.488 3.506 3.459 3.457 54. Ammonia as NH3 </td <td>n</td> <td>52.</td> <td>Sulfur (total)</td> <td>as S</td> <td>9.46</td> <td></td> <td>9.44</td> <td></td> <td>9.25</td> <td></td> <td>9.30</td> <td></td> <td>9.41</td> <td></td>	n	52.	Sulfur (total)	as S	9.46		9.44		9.25		9.30		9.41	
54. Ammonia as NH ₃ Image: Constraint of the second s	s	53.	Total Anion Millequivalents	6	3.492		3.488		3.506		3.459		3.457	
55. Benzotriazole as CeH5N3 Image: CeH5N3		54.	Ammonia	as NH_3										
56. Boron as B 0.04 0.03 0.02 0.02 0.01 57. Silica as SiO ₂ 2.27 2.33 2.27 2.27 2.29 58. Sodium Nitrite as NaNO ₂ <t< td=""><td></td><td>55.</td><td>Benzotriazole</td><td>as $C_6H_5N_3$</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>		55.	Benzotriazole	as $C_6H_5N_3$										
57. Silica as SiO ₂ 2.27 2.33 2.27 2.27 2.29 58. Sodium Nitrite as NaNO ₂		56.	Boron	as B	0.04		0.03		0.02		0.02		0.01	
58. Sodium Nitrite as NaNO2 59. Sodium Sulfite as Na2SO3 60. Tolyttriazole as C7H7N3		57.	Silica	as SiO ₂	2.27		2.33		2.27		2.27		2.29	
59. Sodium Sulfite as Na ₂ SO ₃ 60. Tolyltriazole as C ₇ H ₇ N ₃		58.	Sodium Nitrite	as NaNO ₂										
60. Iolyltriazole as C ₇ H ₇ N ₃		59.	Sodium Sulfite	as Na ₂ SO ₃										
		60.	Tolyltriazole	as C ₇ H ₇ N ₃				ontinu						

H		WATER		Regarding	: CATCO						Report N	0.:	60878
		TECHNOL	.OGY	Location:	O'Hare Ir	nternation	al Airport	, Termina	15		Report D	ate:	3/3/25
		•			Chicago,	, IL					Login Da	te:	2/25/25
											Sample [Date:	1/27/25
50	00 S	outh Vermont Street											
Pa	alatir	ne, IL 60067			40		•						
(8	00)	577-2211			/18	IV	9	MITC)/11	IM	14		115
Fa	ax: (8	847) 358-7082											
				Soluble	Insoluble	Soluble	Insoluble	Soluble	Insoluble	Soluble	Insoluble	Soluble	Insoluble
	61.	Bromate	as BrO ₃										
С	62.	Chlorite	as ClO ₂										
0	63.	Cyclohexylamine*	as C ₆ H ₁₃ N										
m	64.	Diethylamine*	as C ₄ H ₁₁ N										
p 0	65.	Diethylaminoethanol*	as C ₆ H ₁₅ NO										
u	66.	Ethylamine*	as C ₂ H ₇ N										
n	67.	Morpholine*	as C₄H ₉ NO										
d	68.	Diethylene Glycol*	% by volume										
S.	69.	Ethylene Glycol*	% by volume										
	70.	Propylene Glycol*	% by volume	•									
	71.	Methanol*	% by volume	•									
M		Heterotrophic Plate Count		ND		3		ND		ND		ND	
C C	72.	@ 22°C(Aerobic)	CFU/ml										
r		Heterotrophic Plate Count		ND		ND		ND		ND		ND	
0	73.		CFU/ml										
b		Heterotrophic Plate Count	CFU/ml	ND		ND		ND		ND		ND	
	74.	(Anaerobic)	0511/01										
i	75.	Denitritying Bacteria	CFU/mi										
0	76.	Fecal Coliform	CFU/100 mi										
g	11.	I Iron Bacteria	CFU/ml										
	78.		CFU/ml										
a	79.	Sulfate Reducers	CFU/mi	.1		-1		.4		.1		1	
1	80.		CFU/100 mi	<1		<1		<1		<1		<1	
	01.	E Coli	CFU/III			-1		-1		-1			
	02.	Enteropool	CF0/100 III	<1		<1		<1		<1		< 1	
			MPN/100 m	<1		<1		<1		<1		<1	
-	03.	Regudemence Acruginese	MDN/100 m			-1		-1		-1			
	04.	Posiduo by Evaporation	IVIEIN/100 III	<1		<1		<1		<1		<	
	86												
	87	System Canacity	nal										
	88	Turbidity	NTU	0.12		0.12		0.11		0.11		0.11	
	89	PTSA	nnh	0.12		0.12		0.11		0.11		0.11	
	90	Dissolved Oxygen	as O ₂										
	91	DEHA	nph										
	92	Ervthorbic Acid	ppb										
	93.	Fluorescein	ppb										
	94.	Chlorine (free)	as Cl ₂	1.05		1.03		1.00		1.15		1.14	
	95.	Sulfide	as S ⁻²										
	96.	Arsenic	as As										
	97.	Mercury	as Hg										
	98.	Nitrate-Nitrite Nitrogen	as N										
	99.	Nitrate Nitrogen	as N										
	100.	Nitrite Nitrogen	as N										
	101.	Phosphonate											

LABORATORY REPORT - WATER ANALYSIS

LEH All data except pH in parts per million or as indicated

*Analysis by Gas Chromatography.

Customer No.:

1005393

				LA	BORAT	ORY RE	PORT -	WATER	ANALY	SIS	Customer	No.:	1005393
				Regarding:	CATCO						Report No).:	60878
H	-1	WATER	0.01/	Location:	O'Hare I	nternation	al Airport	, Termina	15		Report Da	ate:	3/3/25
		TECHNOI	LUGY					Login Dat	e:	2/25/25			
•		TH									Sample D	ate:	1/27/25
50	0.5	outh Vermont Street									<u> </u>		
Pa	alati	ne. IL 60067											
(8	00)	577-2211		M1	16	М	17	M	18	M	19	М	20
È	ax: (847) 358-7082											
	``	/		Soluble	Insoluble	Soluble	Insoluble	Soluble	Insoluble	Soluble	Insoluble	Soluble	Insoluble
	1.	Alkalinity ("P")	as CaCO ₃	0		0		0		0		0	
	2.	Alkalinity ("M")	as $CaCO_3$	119		114		115		117		116	
	3.	Alkalinity ("OH") (calculated)	as $CaCO_3$										
w	4.	Free Mineral Acidity	as $CaCO_3$										
а	5.	Chemical Oxygen Demand	d (C.O.D.)	0		0		0		0		0	
t	6.	Chloroform Extractables											
е	7.	Dissolved Solids		209		209		209		206		210	
r	8.	Hardness (Calcium)	as CaCO ₃	96		95		96		101		95	
	9.	Hardness (Magnesium)	as CaCO ₃	53		53		53		53		52	
P	10.	Hardness (Total)	as $CaCO_3$	149		148		149		154		14/	
r	11.	IPH Refractive Index		٥./		٥. <i>١</i>		٥. /		٥./		1.1	
0	13	Specific Conductance	umhos/cm	317		317		318		312	<u> </u>	318	
p	14.	Specific Gravity	g/ml			017		0.0		0.2			
e	15.	Suspended Solids			0.0		0.5		0.0		0.0		0.5
	16.	Total Inorganic Carbon											
	17.	Total Organic Carbon											
r	18.	Aluminum	as Al	0.01		0.00		0.02		0.01		0.00	
t	19.	Barium	as Ba	0.02		0.02		0.02		0.02		0.02	
i	20.		as Ca	38.6		38.2		38.2		40.4		38.0	
e	21.	Chromium	as Cr	0.00		0.00		0.00		0.00		0.00	
s	22.	Copper	as Cu	0.00		0.00		0.00		0.00]	0.00	
	23.	Iron	as Fe	0.00		0.00		0.00		0.00		0.00	
	24.	Lead	as Pb	0.000		0.001		0.001		0.001		0.001	
	20.	Magnesium	as Li as Ma	12.8		12.8		12.8	-	12 0		12 7	
	20.	Manganese	as Mg	0.00		0.00		0.00		0.00	}	0.00	
	27.	Nickel	as Ni	0.00		0.00		0.00		0.00		0.00	
	29	Potassium	as K	1.60		1.60		1.60		1.58		1.57	
	30.	Silver	as Ag	0.00		0.00		0.00		0.00		0.00	
c	31.	Sodium	as Na	9.35		9.29		9.26		9.38		9.30	
а	32.	Strontium	as Sr	0.14		0.13		0.14		0.13	j – – – j	0.14	
t	33.	Zinc	as Zn	0.01		0.01		0.00		0.00		0.00	
	34.	Total Cation Milleguivalent	S	3.269		3.248		3.250		3.360		3.229	
n	35.	Acetate	as $C_2H_3O_2$	0.00		0.00		0.00		0.00		0.00	
s	36.	Bromide	as Br	0.00		0.00		0.00		0.00		0.00	
	37.	Chloride	as Cl	15.9		15.9		16.1		16.1		16.2	
	38.	Chlorate	as CIO ₃	0.00		0.00		0.00		0.00		0.00	
	39.	Chromate	as CrO ₄										
	40.	Fluoride	as F	0.75		0.75		0.75		0.75		0.75	
	41.	Formate	as CHO ₂	0.00		0.00		0.00		0.00		0.02	
	42.	Glycolate	as C ₂ H ₃ O ₃	0.00		0.00		0.00		0.00		0.00	
	43.	Molybdate	as MoO ₄	0.00		0.00		0.00		0.00		0.00	
	44.	Nitrate	as NO ₃	1.17		1.17		1.23		1.23		1.21	
	45.		as NO ₂	0.00		0.00		0.00		0.00	<u> </u>	0.00	
	46.		as $C_2 O_4$	0.00		0.00		0.00		0.00		0.00	
	47.	Phoephorus (total)	as PO ₄	1.09		1.16		1.17		1.15	1	1.14	
Δ	48.	Propiopoto		0.64		0.64		0.64		0.67	<u> </u> ;	0.62	
n	49. 50	Sulfamato		0.00		0.00		0.00		0.00		0.00	
i	50.	Sulfato	as \$0	0.00		0.00		0.00		0.00	<u> </u>	0.00	
0	51.	Sulfur (total)	as 504	20.0		20.0		20.9		20.7		20.0 0.17	
n e	52.	Total Anion Millequivalents	300	2 5 2 1		3.20		3.32		3.00		3.17 2 /Q/	
	53. 54	Ammonia	, as NH ₂	3.037		3.433		3.403		3.491		5.404	
	55	Benzotriazole	as C _e H _e N _e										
	56	Boron	as B	0.01		0.00		0.00		0.00		0.00	
	57	Silica	as SiO ₂	2 30		2 30		2 37		2 29		2 30	
	58.	Sodium Nitrite	as NaNO ₂			2.00		,		2.20			
	59.	Sodium Sulfite	as Na ₂ SO ₃										
	60.	Tolyltriazole	as C ₇ H ₇ N ₂										
Analyst	LEH	All data except pH in parts per million or as	indicated	· ·		С	ontinued or	reverse sid	e.	-			

H		WATER	0.014	Regarding	CATCO						Report N	0.:	60878
L		TECHNOL	LOGY	Location:	O'Hare I	nternation	al Airport	, Termina	15		Report D	ate:	3/3/25
		75			Chicago,	, IL					Login Da	te:	2/25/25
											Sample [Date:	1/27/25
50	00 S	outh Vermont Street											
P	alatiı	ne, IL 60067			10		47		40		10		100
(8	800)	577-2211		M	16	M	17	M	18	M	19	N 1	120
Fa	ax: (8	847) 358-7082											
				Soluble	Insoluble	Soluble	Insoluble	Soluble	Insoluble	Soluble	Insoluble	Soluble	Insoluble
	61.	Bromate	as BrO ₃										
С	62.	Chlorite	as CIO ₂										
0	63.	Cyclohexylamine*	as C ₆ H ₁₃ N										
m	64.	Diethylamine*	as C ₄ H ₁₁ N										
p 0	65.	Diethylaminoethanol*	as C ₆ H ₁₅ NO										
u	66.	Ethylamine*	as C ₂ H ₇ N										
n	67.	Morpholine*	as C ₄ H ₉ NO										
d	68.	Diethylene Glycol*	% by volum	e									
s	69.	Ethylene Glycol*	% by volum	e									
	70.	Propylene Glycol*	% by volum	e									
	71.	Methanol*	% by volum	ŧ									
M i	72.	Heterotrophic Plate Count @ 22°C(Aerobic)	CFU/ml	ND		ND		ND		ND		ND	
C r		Heterotrophic Plate Count											
0	73.	@ 37°C(Aerobic)	CFU/ml										
b		Heterotrophic Plate Count	CFU/ml	ND		ND		ND		ND		ND	
0	74.	(Anaerobic)	CELI/ml										
I	75.	Ecol Coliform	CFU/III										
0	70.	Iron Bacteria	CFU/100 III										
g	79	Mold	CFU/ml										
c	70.	Sulfate Reducers	CFU/ml										
a	80	Total Coliform	CEU/100 ml			_1		-1		1			
1	81	Yeast	CELI/ml										
	82	F Coli	CEU/100 ml	<1		<1		د1		<1		<1	
	02.	Enterococci	01 0/100 11										
	83.	(Fecal Streptococci)	MPN/100 m	<1		<1		<1		<1		<1	
	84.	Pseudomonas Aeruginosa	MPN/100 m	<1		<1		<1		<1		<1	
	85.	Residue by Evaporation											
	86.	Volatile Solids											
	87.	System Capacity	gal.										
	88.	Turbidity	NTU	0.11		0.10		0.25		0.14		0.12	
	89.	P.T.S.A.	ppb										
	90.	Dissolved Oxygen	as O ₂										
	91.	DEHA	ppb										
	92.	Erythorbic Acid	ppb										
	93.	Fluorescein	ppb										
	94.	Chlorine (free)	as Cl ₂	1.12		1.01		1.13		1.14		1.15	
	95.	Sulfide	as S ⁻²										
	96.	Arsenic	as As										
	97.	Mercury	as Hg										
	98.	Nitrate-Nitrite Nitrogen	as N										
	99.	INITRATE INITROGEN	as N										
	100.	Nitrite Nitrogen	as N										
	101.	Phosphonate											
	l l												
	1												
	ĺ												
	Í												

LABORATORY REPORT - WATER ANALYSIS

Customer No.:

1005393

LEH All data except pH in parts per million or as indicated

*Analysis by Gas Chromatography.

_				LA	BORAT	ORY RE	PORT -	WATER	ANALYS	SIS	Customer	No.:	1005393
		WATER		Regarding:	CATCO						Report No).:	60878
	-71	TECHNO	067	Location:	O'Hare I	nternation	al Airport	i, Termina	15		Report Da	ate:	3/3/25
			-001		Chicago,	, IL					Login Dat	.e:	2/25/25
											Sample D	ate:	1/27/25
50 Pa (8	00 S alatii 00)	outh Vermont Street ne, IL 60067 577-2211		M	21	M	24	M	25	м	26	M:	27
Fa	ax: (847) 358-7082											
	4	Alkolinity ("D")	25 (20)	Soluble	Insoluble	Soluble	Insoluble	Soluble	Insoluble	Soluble		Soluble	Insoluble
	1.	Alkalinity ("M")		102		117		114		119		117	
	2.	Alkalinity ("OH") (calculated)	as CaCO ₃	102		117		114		110		117	
w	4.	Free Mineral Acidity	as CaCO ₃										
a	5.	Chemical Oxygen Demand	d (C.O.D.)	0		0		0		0		0	
t	6.	Chloroform Extractables	. ,									ĺ	
е	7.	Dissolved Solids		204		208		208		209		209	
r	8.	Hardness (Calcium)	as $CaCO_3$	97		96		96		97		96	
	9.	Hardness (Magnesium)	as CaCO ₃	53		52		52		52		52	
P	10.	Hardness (Total)	as CaCO ₃	150		148		149		150		148	
r	11.	PH Refractive Index		7.8		7.8		7.9		1.1		1.0	
0	13.	Specific Conductance	µmhos/cm	310		316		316	[317		317	
р	14.	Specific Gravity	g/ml										
e	15.	Suspended Solids			0.0		0.0		0.0		0.0		0.0
	16.	I otal Inorganic Carbon											
r	17.		as Al	0.01		0.00		0.00		0.02		0.01	
ť	19.	Barium	as Ba	0.01		0.00		0.00		0.02		0.01	
i	20.	Calcium	as Ca	38.7		38.3		38.6		38.9		38.4	
е	` 21.	Chromium	as Cr	0.00		0.00		0.00		0.00		0.00	
s	22.	Copper	as Cu	0.00		0.00		0.00		0.00		0.00	
	23.	Iron	as Fe	0.00		0.00		0.00		0.01		0.00	
	24.	Lead	as Pb	0.000		0.000		0.001		0.000		0.000	
	25.	Lithium	as Li	0.00		0.00		0.00		0.00		0.00	
	26.	Magnesium	as Mg	12.8		12.7		12.6		12.7		12.7	
	27.	Nickol	as IVIII as Ni	0.00		0.00		0.00				0.00	
	20.	Potassium	as K	1.58		1.57		1.57		1.59		1.57	
	30.	Silver	as Ag	0.00		0.00		0.00		0.00		0.00	
С	31.	Sodium	as Na	9.24		9.23		9.15		9.23		9.25	
a	32.	Strontium	as Sr	0.13		0.14		0.13		0.14		0.14	
li	33.	Zinc	as Zn	0.01		0.04		0.05		0.01		0.01	
0	34.	Total Cation Millequivalent	S	3.267		3.247		3.247		3.271		3.244	
n	35.	Acetate	as C ₂ H ₃ O ₂	0.00		0.00		0.00		0.00		0.00	
S	36.	Bromide	as Br	16.0		15.0		0.00		16.00		0.00	
	37.	Chlorate	as CIO	0.00		0.00		0.00		0.01		0.00	
	39	Chromate	as CrO ₄	0.00		0.00		0.00		0.00		0.00	
	40.	Fluoride	as F	0.77		0.76		0.75		0.77		0.75	
	41.	Formate	as CHO ₂	0.02		0.00		0.02		0.02		0.00	
	42.	Glycolate	as $C_2H_3O_3$	0.00		0.00		0.00		0.00		0.00	
	43.	Molybdate	as MoO_4	0.00		0.00		0.00		0.00		0.00	
	44.	Nitrate	as NO ₃	1.19		1.19		1.19		1.26		1.23	
	45.	Nitrite	as NO ₂	0.00		0.00		0.00		0.00		0.00	
	46.	Dhaphata (arth-)	as C_2O_4	0.00		0.00		0.00		0.00		0.00	
	47.	Phosphale (onno)	as PU ₄	0.64		0.90		0.63		0.65		0.63	
A	49	Propionate	as C ₂ H _E O ₂	0.04		0.03		0.03	L	0.05		0.03	
n	50.	Sulfamate	as NH ₂ SO ₃	0.00		0.00		0.00		0.00		0.00	
i	51.	Sulfate	as SO ₄	26.7		26.6		26.1		26.7		26.8	
n	52.	Sulfur (total)	as S	9.36		9.30		9.31		9.30		9.18	
s	53.	Total Anion Millequivalents	3	3.205		3.489		3.414		3.523		3.502	
	54.	Ammonia	as NH ₃										
	55.	Benzotriazole	as C ₆ H ₅ N ₃									0.00	
	56.	Boron Silico	as BiO	0.00		0.00		0.00		0.00		0.00	
	57. 59	Sodium Nitrite	as SIO_2 as NaNO.	2.28		2.28		2.28		2.29		2.38	
	59	Sodium Sulfite	as Na ₂ SO ₂						L				
	60.	Tolyltriazole	as C ₇ H ₇ N ₂										
Analyst	LEH	All data except pH in parts per million or as	indicated	•		C	ontinued or	reverse sid	e.				

H		WATER	0.014	Regarding	: CATCO						Report N	0.:	60878
		TECHNOL	LOGY	Location:	O'Hare I	nternation	al Airport	, Termina	15		Report D	ate:	3/3/25
		T 14			Chicago	, IL					Login Da	te:	2/25/25
											Sample [Date:	1/27/25
50	2 00	outh Vermont Street											
P	alatii	ne II 60067											
(8	300)	577-2211		N	121	M	24	M	25	М	26	N	127
F	ax: (8	847) 358-7082											
•		,		Soluble	Insoluble	Soluble	Insoluble	Soluble	Insoluble	Soluble	Insoluble	Soluble	Insoluble
	61.	Bromate	as BrO ₂										
	62.	Chlorite	as CIO ₂										
0	63.	Cvclohexvlamine*	as C ₆ H ₁₃ N										
m	64.	Diethylamine*	as C₄H₁₁N										
р	65.	Diethylaminoethanol*	as C ₆ H ₁₆ NO										
0	66.	Ethylamine*	as C ₂ H ₇ N										
u n	67	Morpholine*	as C₄H₀NO										
d	68.	Diethylene Glycol*	% by volume	e									
s	69	Ethylene Glycol*	% by volum	e									
	70	Propylene Glycol*	% by volum	L .									
	71	Methanol*	% by volum	L .									
М		Heterotrophic Plate Count	70 by Volum	ľ									
i	72	@ 22°C(Aerobic)	CEU/ml	ND)	ND		ND		ND		ND	
с	1 12.	Heterotrophic Plate Count	01 0/111										
r	73	@ 37°C(Aerobic)	CFU/ml	ND		ND		ND		ND		ND	
0	1.0.	Heterotrophic Plate Count	0.0/111										
i	74	(Anaerobic)	CFU/ml	ND		ND		ND		ND		ND	
0	75	Denitrifying Bacteria	CEU/ml										
Т	76	Fecal Coliform	CEU/100 ml										
0	77	Iron Bacteria	CEU/ml										
g	78	Mold	CEU/ml										
c	79	Sulfate Reducers	CELI/ml										
a	80	Total Coliform	CEU/100 ml			-1		-1		-1			
Т	81	Veget	CELI/ml			~ 1							
	82	E Coli	CFU/100 ml			_1		_1		-1			
	02.	Enterococci	010/10011			<u> </u>							
	0.2	(Fecal Streptococci)	MPN/100 m	<1		<1		<1		<1		<1	
	03.		MDN/400 m			-1		.4		.4			
	04.	Pseudomonas Aeruginosa	WPN/100 m	<		<1		<1		<1		<	
	85.	Kesique by Evaporation											
	00.		aol										
	87.		gai.	0.45		0.40		0.00		0.40		0.45	
	88.		NIU	0.15		0.12		0.20		0.12		0.15	
	89.	P.I.J.A.	ppp										
	90.		as O ₂										
1	91.		hhn										
	92.		рро										
	93.			4.00		4.00		4.00		4.00		1.00	
	94.		dS Ul ₂	1.08		1.09		1.09		1.08		1.09	
	95.	Sulfide	as S*										
1	96.	AISENIC	as As										
	97.		as Hg										
	98.	Nitrate-Nitrite Nitrogen	as N										
1	99.	INITRATE INITROGEN	as N										
	100.	Nitrite Nitrogen	as N										
	101.	Phosphonate											
1													
1													
1													
1													
1													
1													

LABORATORY REPORT - WATER ANALYSIS

LEH All data except pH in parts per million or as indicated

*Analysis by Gas Chromatography.

Customer No.:

1005393

				LA	BORAT	ORY RE	PORT -	WATER	ANALYS	SIS	Customer	No.:	1005393
		WATER		Regarding:	CATCO						Report No).:	60878
Þ	-[]	TECHNOL	067	Location:	O'Hare I	nternation	al Airport	t, Termina	15		Report Da	ate:	3/3/25
			-001		Chicago,	, IL					Login Dat	e:	2/25/25
		-									Sample D	ate:	1/27/25
50	0 S	outh Vermont Street											
Pa	alati	ne, IL 60067		M	28	М	29	м	30	I м	32	м	33
(8	00)	577-2211			20		20				02		00
Fa	ax: (847) 358-7082		Ochible	la e e la de la	Ostubla	la e el de la	Ostuble	la s slubla	Ostuble	la e e la de la	Ostuble	la a alcola la
	1	Alkalinity ("P")	as CaCO		Insoluble		Insoluble	Soluble	Insoluble		Insoluble	Soluble	Insoluble
	י. י	Alkalinity ("M")	as CaCO.	115		117		116		121		116	
	2.	Alkalinity ("OH") (calculated)	as CaCO ₃	113				110		121		110	
w	4	Free Mineral Acidity	as CaCO ₂										
a	5.	Chemical Oxygen Demand	I (C.O.D.)	0		1		2		3		0	
t	6.	Chloroform Extractables	. ,										
e	7.	Dissolved Solids		209		209		209		208		209	
r	8.	Hardness (Calcium)	as $CaCO_3$	96		97		97		97		97	
	9.	Hardness (Magnesium)	as CaCO ₃	52		52		52		52		52	
P	10.	Hardness (Total)	as CaCO ₃	149		149		149		149		150	
r	11.	PH Refractive Index		1.6		1.1		1.1		0.7		1.0	
0	13.	Specific Conductance	µmhos/cm	317		317		317		316		317	
p	14.	Specific Gravity	g/ml										
e	15.	Suspended Solids			1.0		0.0		0.5		0.5		0.0
	16.	Total Inorganic Carbon											
	17.	Liotal Organic Carbon	as Al	0.01		0.00		0.00		0.00		0.00	
¦	10.	Barium	as Ba	0.01		0.00		0.00		0.00		0.00	
i	20.	Calcium	as Ca	38.5		38.8		38.8		38.8		38.9	
e	` 21.	Chromium	as Cr	0.00		0.00		0.00		0.00		0.00	
s	22.	Copper	as Cu	0.00		0.00		0.00		0.00		0.00	
	23.	Iron	as Fe	0.01		0.00		0.00		0.00		0.00	
	24.	Lead	as Pb	0.001		0.003		0.000		0.000		0.000	
	25.	Lithium	as Li	0.00		0.00		0.00		0.00		0.00	
	26.	Magnesium	as Mg	12.7		12.6		12.7		12.7		12.7	
	27.	Nickol	as Mi	0.00		0.00		0.00		0.00		0.00	
	20.	Potassium	as K	1.58		1 79		1.69		1 64		1.61	
	30.	Silver	as Ag	0.00		0.00		0.00		0.00		0.00	
c	31.	Sodium	as Na	9.25		9.09		9.22		9.16		9.19	
a	32.	Strontium	as Sr	0.14		0.14		0.14		0.14		0.14	
t	33.	Zinc	as Zn	0.00		0.01		0.01		0.01		0.01	
0	34.	Total Cation Millequivalent	S	3.252		3.256		3.262		3.259		3.268	
n	35.	Acetate	as C ₂ H ₃ O ₂	0.00		0.00		0.00		0.00		0.00	
s	36.	Bromide	as Br	0.00		0.00		0.00				0.01	
	37.	Chlorate	as CIO-	0.01		0.01		15.9		15.9		15.9	
	39	Chromate	as CrO	0.00		0.00		0.00		0.00		0.00	
	40.	Fluoride	as F	0.75		0.75		0.76		0.76		0.76	
	41.	Formate	as CHO ₂	0.01		0.02		0.03		0.02		0.01	
	42.	Glycolate	as C ₂ H ₃ O ₃	0.00		0.00		0.00		0.00		0.00	
	43.	Molybdate	as MoO_4	0.00		0.02		0.00		0.00		0.00	
	44.	Nitrate	as NO ₃	1.24		1.23		1.23		1.24		1.27	
	45.	Nitrite	as NO ₂	0.00		0.00		0.00		0.00		0.00	
	46.		as C_2O_4	0.00		0.00		0.00		0.00		0.00	
	47.	Phosphate (ortho)	as PU ₄	1.15		1.13		1.17		1.19		1.1/	
A	48. 49	Propionate	as r as C ₂ H ₂ O ₂	0.03		0.04		0.04		0.04		0.04	
n	50.	Sulfamate	as NH ₂ SO ₃	0.00		0.00		0.00		0.00		0.00	
i	51.	Sulfate	as SO ₄	26.8		26.8		27.0		27.0		27.0	
n	52.	Sulfur (total)	as S	9.21		9.30		9.23		9.19		9.31	
s	53.	Total Anion Millequivalents	3	3.453		3.504		3.488		3.579		3.488	
	54.	Ammonia	as NH ₃										
	55.	Benzotriazole	as C ₆ H ₅ N ₃										
	56.	Boron	as B	0.00		0.00		0.00		0.00		0.00	
	57. 50	Sodium Nitrite	as SIU2 as NaNO	2.27		2.28		2.29		2.31		2.30	
	59	Sodium Sulfite	as Na ₂ SO ₂										
	60,	Tolyltriazole	as C ₇ H ₇ N ₉										
Analyst	LEH	All data except pH in parts per million or as	indicated	,		С	ontinued or	reverse sid	e.	•		<u> </u>	

H		WATER	0.014	Regarding	CATCO						Report N	0.:	60878
		TECHNOL	LOGY	Location: O'Hare International Airport, Terminal 5							Report Date:		3/3/25
		1 1			Chicago,	IL					Login Da	te:	2/25/25
											Sample [Date:	1/27/25
5	00 S	outh Vermont Street											
P	alatiı	ne, IL 60067					00		20		20		100
(8	300)	577-2211			28	M	29	IVI	30	IVI	32	I N	133
F	ax: (8	847) 358-7082											
				Soluble	Insoluble	Soluble	Insoluble	Soluble	Insoluble	Soluble	Insoluble	Soluble	Insoluble
	61.	Bromate	as BrO ₃										
С	62.	Chlorite	as CIO ₂										
0	63.	Cyclohexylamine*	as C ₆ H ₁₃ N										
m a	64.	Diethylamine*	as C ₄ H ₁₁ N										
0	65.	Diethylaminoethanol*	as C ₆ H ₁₅ NO										
u	66.	Ethylamine"	as C ₂ H ₇ N										
n d	67.	Distbulana Chucal*											
s	68.	Ethylono Clycol*	% by volume	ŧ L									
	70	Propulana Glucol*	% by volume	ŧ									
	70.	Methanol*	% by volume	F									
М	- ' · ·	Heterotrophic Plate Count	70 by Volum	ľ									
i	72.	@ 22°C(Aerobic)	CFU/ml	ND		ND		ND		ND		ND	
с		Heterotrophic Plate Count											
r	73.	@ 37°C(Aerobic)	CFU/ml	ND		ND		ND		ND		ND	
b	1	Heterotrophic Plate Count											
i	74.	(Anaerobic)	CFU/mi	ND		ND		ND		ND			
0	75.	Denitrifying Bacteria	CFU/ml										
	76.	Fecal Coliform	CFU/100 ml										
g	77.	Iron Bacteria	CFU/ml										
i	78.	Mold	CFU/ml										
C	79.	Sulfate Reducers	CFU/ml										
1	80.	Total Coliform	CFU/100 ml	<1		<1		<1		<1		<1	
	81.	Yeast	CFU/ml										
	82.	E.COII	CFU/100 mi	<1		<1		<1		<1		<1	
		Enterococci	MPN/100 m	<1		<1		<1		<1		<1	
	83.		MDN/400 m	1		.1		-1		.4		1	
	04.	Pseudomonas Aeruginosa Posiduo by Evaporation	WPN/100 M	<		<1		<1		<1		<	
	86	Volatile Solide											
	87	System Canacity	nal										
	88.	Turbidity	NTU	0.12		0.12		0.11		0.13		0.12	
	89.	P.T.S.A.	dad										
	90.	Dissolved Oxygen	as O ₂										
	91.	DEHA	ppb										
	92.	Erythorbic Acid	ppb										
	93.	Fluorescein	ppb										
	94.	Chlorine (free)	as Cl ₂	1.04		1.07		1.09		1.09		1.22	
	95.	Sulfide	as S ⁻²										
	96.	Arsenic	as As										
	97.	Mercury	as Hg										
	98.	Nitrate-Nitrite Nitrogen	as N										
	99.	Nitrate Nitrogen	as N										
	100.	Nitrite Nitrogen	as N										
	101.	Phosphonate											
	1												·

LABORATORY REPORT - WATER ANALYSIS

LEH All data except pH in parts per million or as indicated

*Analysis by Gas Chromatography.

Customer No.:

1005393

				LA	BORAT	ORY RE	PORT -	WATER	ANALYS	SIS	Customer	No.:	1005393
				Regarding:	CATCO						Report No	J.:	60878
Þ			062	Location:	O'Hare Ir	nternation	al Airport	, Termina	15		Report Da	ate:	3/3/25
			.001		Chicago,	IL					Login Dat	e:	2/25/25
											Sample D	ate:	1/27/25
50	0 S	outh Vermont Street											
Pa	alati	ne, IL 60067		M-	34	M	35	м	36		37	м	38
(8	00)	577-2211			54	IVI.	55		50		51		50
Fa	ax: (847) 358-7082											
\square	4	Alkolipity ("D")	25 (20)	Soluble	Insoluble	Soluble	Insoluble	Soluble	Insoluble	Soluble		Soluble	Insoluble
	1.			120		115		115		116		116	
	2.	Alkalinity ("OH") (coloulated)	as CaCO ₃	120		115		115				110	
w	4	Free Mineral Acidity	as CaCO ₂										
a	5.	Chemical Oxygen Demand	(C.O.D.)	0		0		0		0		0	
t	6.	Chloroform Extractables	()										
е	7.	Dissolved Solids		205		209		208		209		208	
r	8.	Hardness (Calcium)	as $CaCO_3$	98		97		98		97		98	
	9.	Hardness (Magnesium)	as $CaCO_3$	53		52		52		52		52	
Ρ	10.	Hardness (Total)	as $CaCO_3$	151		149		151		150		151	
r	11.	pH		7.7		7.7.		7.7		7.6		7.6	
	12.	Specific Conductance	umhos/cm	210		217		217		217		316	
α	14.	Specific Gravity	a/ml	312		517		517		517		510	
e	15.	Suspended Solids	.g		1.5		0.0		0.0		0.0		1.5
	16.	Total Inorganic Carbon											
	17.	Total Organic Carbon											
r	18.	Aluminum	as Al	0.00		0.00		0.01		0.02		0.03	
t	19.	Barium	as Ba	0.02		0.02		0.02		0.02		0.02	
1	20.	Calcium	as Ca	39.3		38.9		39.3		39.0		39.4	
e	21.	Coppor	as Cr	0.00		0.00		0.00		0.00		0.00	
5	22.	Iron	as Cu as Fe	0.01		0.00		0.00		0.01		0.02	
	24	Lead	as Pb	0.00		0.00		0.00		0.01		0.02	
	25.	Lithium	as Li	0.00		0.00		0.00		0.00		0.00	
	26.	Magnesium	as Mg	12.8		12.6		12.7		12.7		12.7	
	27.	Manganese	as Mn	0.00		0.00		0.00		0.00		0.00	
	28.	Nickel	as Ni	0.00		0.00		0.00		0.00		0.00	
	29.	Potassium	as K	1.61		1.59		1.57		1.58		1.60	
	30.	Silver	as Ag	0.00		0.00		0.00		0.00		0.00	
C	31.	Sodium	as Na	9.30		9.17		9.14		9.32		9.18	
t	32.	Zino	as Sr	0.14		0.14		0.14		0.14		0.14	
i	33.	Total Cation Milloquivalante	as 211	2 204		2 260		2 2 9 5		2.01		2 207	
0	35	Acetate	as CoHoOo	0.00		0.00		0.00		0.00		0.00	
s	36.	Bromide	as Br	0.00		0.00		0.00		0.00		0.00	
	37.	Chloride	as Cl	16.0		16.0		15.9		16.1		15.9	
	38.	Chlorate	as CIO ₃	0.00		0.00		0.00		0.00		0.00	
	39.	Chromate	as CrO ₄										
	40.	Fluoride	as F	0.76		0.76		0.76		0.75		0.77	
	41.	Formate	as CHO ₂	0.03		0.02		0.02		0.20		0.01	
	42.	Glycolate	as $C_2H_3O_3$	0.00		0.00		0.00		0.00		0.00	
	43.	Nitrato		0.00		0.00		0.00		0.00	1	0.00	
	44.	Nitrite	as NO ₃	0.00		0.00		0.00		0.92		0.00	
	46	Oxalate	as C ₂ O ₄	0.00		0.00		0.00		0.00		0.00	
	47.	Phosphate (ortho)	as PO ₄	1.23		1.19		1.10		1.27		1.23	
	48.	Phosphorus (total)	as P	0.65		0.63		0.65		0.66		0.69	
A	49.	Propionate	as $C_3H_5O_2$	0.00		0.00		0.00		0.00		0.00	
n	50.	Sulfamate	as NH ₂ SO ₃	0.00		0.00		0.00		0.00		0.00	
	51.	Sulfate	as SO ₄	26.9		27.0		27.1		26.9		27.0	
n	52.	Sulfur (total)	as S	9.49		9.27		9.40		9.40	ļ	9.52	
s	53.	Total Anion Millequivalents		3.565		3.470		3.468		3.490		3.489	
	54.	Ammonia	as NH ₃										
	55.	Boron	as U ₆ H ₅ N ₃	0.00		0.00		0.00		0.00		0.00	
	50. 57	Silica	as SiO ₂	2 21		2.00		2 20		0.00		2 30	
	58	Sodium Nitrite	as NaNO ₂	2.01		2.20		2.23		2.30		2.00	
	59.	Sodium Sulfite	as Na ₂ SO ₃										
	60.	Tolyltriazole	as C ₇ H ₇ N ₃										
Analyst	LEH	All data except pH in parts per million or as in	ndicated	· · · · · · · · · · · · · · · · · · ·		С	ontinued or	reverse sid	le.			·	

H			Regarding	Regarding: CATCO Report No.:									
		TECHNOL	LOGY	Location: O'Hare International Airport, Terminal 5							Report Date:		3/3/25
		T 14			Chicago,	, IL					Login Da	te:	2/25/25
											Sample [Date:	1/27/25
5	00 5	outh Vermont Street									• •		
P	alatii	ne II 60067											
.(8	300)	577-2211		M	134	М	35	M	36	M	137	N	138
È	ax: (847) 358-7082											
	(- ,		Soluble	Insoluble	Soluble	Insoluble	Soluble	Insoluble	Soluble	Insoluble	Soluble	Insoluble
Γ	61.	Bromate	as BrO ₃										
	62.	Chlorite	as CIO ₂										
0	63.	Cvclohexvlamine*	as C ₆ H ₁₃ N										
m	64.	Diethylamine*	as C ₄ H ₁₁ N										
р	65.	Diethylaminoethanol*	as C ₆ H ₁₅ NO)									
0	66.	Ethylamine*	as C ₂ H ₇ N										
n	67.	Morpholine*	as C ₄ H ₉ NO										
d	68.	Diethylene Glycol*	% by volume	e									
s	69.	Ethylene Glycol*	% by volum	e									
	70.	Propylene Glycol*	% by volum	e									
	71.	Methanol*	% by volum	e									
М		Heterotrophic Plate Count											
i	72.	@ 22°C(Aerobic)	CFU/ml			ND		ND				ND	
C r		Heterotrophic Plate Count											
0	73.	@ 37°C(Aerobic)	CFU/ml			ND		ND					
b		Heterotrophic Plate Count											
i	74.	(Anaerobic)				ND		IND					
0	75.	Denitrifying Bacteria	CFU/ml										
	76.	Fecal Coliform	CFU/100 ml										
g	77.	Iron Bacteria	CFU/ml										
i	78.	Mold	CFU/ml										
С	79.	Sulfate Reducers	CFU/ml										
a I	80.	Total Coliform	CFU/100 ml	<1		<1		<1		<1		<1	
Ι.	81.	Yeast	CFU/ml										
	82.	E.Coli	CFU/100 ml	<1		<1		<1		<1		<1	
		Enterococci	MPN/100 m			-1		-1		1			
	83.	(Fecal Streptococci)	WII 14/100 III			~ 1							
	84.	Pseudomonas Aeruginosa	MPN/100 m	<1		<1		<1		<1		<1	
	85.	Residue by Evaporation											
	86.	Volatile Solids											
	87.	System Capacity	gal.								ļ		
	88.	Turbidity	NTU	0.19		0.22		0.14		0.20		0.23	
	89.	P.T.S.A.	ppb										
	90.	Dissolved Oxygen	as O ₂										
	91.		ppb										
	92.	Erythorbic Acid	ppb								1		
	93.	Fluorescein	ppb										
	94.		as Cl ₂	1.15		1.21		1.21		1.20		1.20	
	95.	Sulfide	as S ⁻²								1		
	96.	Maraum	dS AS										
	97.		as Hg										
1	98.	Nitrate Nitragen											
	99.	Nitrate Nitrogen											
	100.	Dhoophonoto	asin								1		
	101.	Filosphonale											
											1		
													l
1													
1													L
1													
	1												
1		1											
<u>ـــــ</u>											•		

LABORATORY REPORT - WATER ANALYSIS

Customer No.:

1005393

LEH All data except pH in parts per million or as indicated

*Analysis by Gas Chromatography.

		_		LA	BORAT	ORY RE	PORT -	WATER	ANALYS	SIS	Customer	· No.:	1005393
				Regarding: CATCO							Report No .:		60878
┝		WATER	0.014	Location:	O'Hare I	nternatior	al Airport	, Termina	d 5		Report Da	ate:	3/3/25
		TECHNOI	LOGY		Chicago	, IL					Login Dat	e:	2/25/25
		Ти			0	·					Sample Date:		1/27/25
50	0 9	outh Vermont Street									1		.,,
P	alatir												
(8	00)	577-2211		Ma	39	M	40						
Fa	ax: (8	847) 358-7082											
				Soluble	Insoluble	Soluble	Insoluble	Soluble	Insoluble	Soluble	Insoluble	Soluble	Insoluble
	1.	Alkalinity ("P")	as CaCO ₃	0		0							
	2.	Alkalinity ("M")	as CaCO₃	112		114							
	3.	Alkalinity ("OH") (calculated)	as $CaCO_3$										
W	4.	Free Mineral Acidity	as $CaCO_3$										
а	5.	Chemical Oxygen Demand	l (C.O.D.)	0		3							
t	6.	Chloroform Extractables											
е	7.	Dissolved Solids		208		208							
r	8.	Hardness (Calcium)	as CaCO₃	99		98							
	9.	Hardness (Magnesium)	as $CaCO_3$	52		51							
Ρ	10.	Hardness (Total)	as $CaCO_3$	151		149							
r	11.	pH		7.6		7.7							
_	12.	Retractive Index	umbes/or	216		246							
0 n	13. 14	Specific Gravity	µmmus/cm a/ml	310		316							
۲ e	15.	Suspended Solids	g/mi		0.0		0.5			L	1		
5	16.	Total Inorganic Carbon			0.0		0.0				1		
	17.	Total Organic Carbon									İ		
r	18.	Aluminum	as Al	0.01		0.02							
t	19.	Barium	as Ba	0.02		0.02							
i	20.	Calcium	as Ca	39.5		39.1							
е	` 21.	Chromium	as Cr	0.00		0.00							
s	22.	Copper	as Cu	0.01		0.03							
	23.	Iron	as Fe	0.00		0.01							
	24.	Lead	as Pb	0.000		0.002							
	25.	Lithium	as Li	0.00		0.00							
	26.	Magnesium	as Mg	12.7		12.5							
	27.	Manganese	as Mn	0.00		0.00							
	28.	Nickel	as Ni	0.00		0.00							
	29.	Potassium	as K	1.56		1.54							
	30.	Silver	as Ag	0.00		0.00							
С	31.	Sodium	as Na	9.18		9.15							
a +	32.	Strontium	as Sr	0.14		0.14							
i	33.	Zinc	as Zn	0.01		0.01							
0	34.	Total Cation Millequivalent	S	3.293		3.258							
n	35.	Acetate	as C ₂ H ₃ O ₂	0.00		0.00							
s	36.	Bromide	as Br	0.00		0.00							
	37.	Chloride	as Cl	16.0		15.8							
	38.	Chlorate	as CIO ₃	0.00		0.00							
	39.		as CrO ₄			-							
	40.		as F	0.76		0.76							
	41.			0.02		0.03					-		
	42.		as U ₂ H ₃ U ₃	0.00		0.00							
	43.	Nitroto		0.00		0.00							
	44.	Nitrito		1.28		1.23							
	45.			0.00		0.00							
	46.	Dhosphata (artha)	as U ₂ U ₄	0.00		0.00							
	41.	Phoenhorus (total)	as P	0.66		1.21							
A	40. ⊿∩	Pronionate	as C.H.O	0.00		0.00							
n	-49. 50	Sulfamate	as NH ₂ SO ₂	0.00		0.00							
i	51	Sulfate	as SO,	26 /		26.00					1		
0	52	Sulfur (total)	as S	9.45		20.9 Q 20					1		
n s	53	Total Anion Millequivalente		3.43		3.39					1		
1	54	Ammonia	, as NH ₂	0.402		5.440	ļ			L	1		
	55	Benzotriazole	as C _e H _e N _e										
	56	Boron	as B	0.00		0.00				L	1		
	57	Silica	as SiO	2 30		2 3 2					1		
	58	Sodium Nitrite	as NaNO.	2.30		2.32					1		
	59	Sodium Sulfite	as Na ₂ SO ₂								1		
	60 60	Tolvltriazole	as C_H_N								1		
	00.					L	l antinuad an					1	

				LA	BORAT	ORY RE	PORT -	WATER	ANALYS	SIS	Custome	r No.:	1005393
L		WATER		Regarding	Regarding: CATCO							Report No.:	
		TECHNOL	_OGY	Location:	O'Hare I	nternation	al Airport	, Termina	al 5		Report D	ate:	3/3/25
		U 76			Chicago.	, IL		,			Login Da	te:	2/25/25
						,					Sample D	Date:	1/27/25
5(0.5	outh Vermont Street											
P	alatir	ne. IL 60067											
(8	00)	577-2211		M	39	M	40						
Fa	ax: (8	847) 358-7082											
				Soluble	Insoluble	Soluble	Insoluble	Soluble	Insoluble	Soluble	Insoluble	Soluble	Insoluble
	61.	Bromate	as BrO ₃										
c	62.	Chlorite	as CIO ₂										
0	63.	Cyclohexylamine*	as C ₆ H ₁₃ N										
m	64.	Diethylamine*	as C ₄ H ₁₁ N										
p o	65.	Diethylaminoethanol*	as C ₆ H ₁₅ NO										
u	66.	Ethylamine*	as C ₂ H ₇ N										
n	67.	Morpholine*	as C₄H ₉ NO										
d	68.	Diethylene Glycol*	% by volum	•									
S.	69.	Ethylene Glycol*	% by volum	e									
	70.	Propylene Glycol*	% by volum	ŧ									
	71.	Methanol*	% by volum	•									
i	70	Heterotrophic Plate Count		ND		ND							
c	/2.	Hotorotrophic Plate Court											
r o	73.	@ 37°C(Aerobic)	CFU/ml	ND		ND							
b i	74.	Heterotrophic Plate Count (Anaerobic)	CFU/ml	ND		ND							
0	75.	Denitrifying Bacteria	CFU/ml										
	76.	Fecal Coliform	CFU/100 ml										
a	77.	Iron Bacteria	CFU/ml										
i	78.	Mold	CFU/ml										
с	79.	Sulfate Reducers	CFU/ml										
a	80.	Total Coliform	CFU/100 ml	<1		<1							
1.	81.	Yeast	CFU/ml										
	82.	E.Coli	CFU/100 ml	<1		<1							
	83.	Enterococci (Fecal Streptococci)	MPN/100 m	<1		<1							
-	84.	Pseudomonas Aeruginosa	MPN/100 m	<1		<1							
	85. 86	Residue by Evaporation											
	87.	System Capacity	dal.										
	88	Turbidity	NTU	0 11		0.12							
	89.	P.T.S.A.	daa	••••									
	90.	Dissolved Oxygen	as O ₂										
	91.	DEHA	ppb										
	92.	Erythorbic Acid	ppb										
	93.	Fluorescein	ppb										
	94.	Chlorine (free)	as Cl ₂	1.13		1.12							
	95.	Sulfide	as S ⁻²										
	96.	Arsenic	as As										
	97.	Mercury	as Hg										
	98.	Nitrate-Nitrite Nitrogen	as N										
	99.	Nitrate Nitrogen	as N										
	100.	Nitrite Nitrogen	as N										
	101.	Phosphonate											
													l
	1												
					ĺ								

Analyst

National Primary Drinking Water Regulations

Contaminant	MCL or TT ¹ (mg/L) ²	Potential health effects from long-term ³ exposure above the MCL	Common sources of contaminant in drinking water	Public Health Goal (mg/L) ²
Acrylamide	TT ⁴	Nervous system or blood problems; increased risk of cancer	Added to water during sewage/ wastewater treatment	zero
Alachlor	0.002	Eye, liver, kidney, or spleen problems; anemia; increased risk of cancer	Runoff from herbicide used on row crops	zero
Alpha/photon emitters	15 picocuries per Liter (pCi/L)	Increased risk of cancer	Erosion of natural deposits of certain minerals that are radioactive and may emit a form of radiation known as alpha radiation	zero
Reference Antimony	0.006	Increase in blood cholesterol; decrease in blood sugar	Discharge from petroleum refineries; fire retardants; ceramics; electronics; solder	0.006
ဆို Arsenic	0.010	Skin damage or problems with circulatory systems, and may have increased risk of getting cancer	Erosion of natural deposits; runoff from orchards; runoff from glass & electronics production wastes	0
Asbestos (fibers >10 micrometers)	7 million fibers per Liter (MFL)	Increased risk of developing benign intestinal polyps	Decay of asbestos cement in water mains; erosion of natural deposits	7 MFL
Atrazine	0.003	Cardiovascular system or reproductive problems	Runoff from herbicide used on row crops	0.003
ခိုင်္ဂ Barium	2	Increase in blood pressure	Discharge of drilling wastes; discharge from metal refineries; erosion of natural deposits	2
Benzene	0.005	Anemia; decrease in blood platelets; increased risk of cancer	Discharge from factories; leaching from gas storage tanks and landfills	zero
Benzo(a)pyrene (PAHs)	0.0002	Reproductive difficulties; increased risk of cancer	Leaching from linings of water storage tanks and distribution lines	zero
ဆို Beryllium	0.004	Intestinal lesions	Discharge from metal refineries and coal-burning factories; discharge from electrical, aerospace, and defense industries	0.004
Beta photon emitters	4 millirems per year	Increased risk of cancer	Decay of natural and man-made deposits of certain minerals that are radioactive and may emit forms of radiation known as photons and beta radiation	zero
Bromate	0.010	Increased risk of cancer	Byproduct of drinking water disinfection	zero
ဆို Cadmium	0.005	Kidney damage	Corrosion of galvanized pipes; erosion of natural deposits; discharge from metal refineries; runoff from waste batteries and paints	0.005
Carbofuran	0.04	Problems with blood, nervous system, or reproductive system	Leaching of soil fumigant used on rice and alfalfa	0.04

DISINFECTANT

National Primary Drinking Water Regulations

Contaminant	MCL or TT ¹ (mg/L) ²	Potential health effects from long-term³ exposure above the MCL	Common sources of contaminant in drinking water	Public Health Goal (mg/L)²
Carbon tetrachloride	0.005	Liver problems; increased risk of cancer	Discharge from chemical plants and other industrial activities	zero
Chloramines (as Cl ₂)	MRDL=4.0 ¹	Eye/nose irritation; stomach discomfort; anemia	Water additive used to control microbes	MRDLG=41
Chlordane	0.002	Liver or nervous system problems; increased risk of cancer	Residue of banned termiticide	zero
Chlorine (as Cl ₂)	MRDL=4.0 ¹	Eye/nose irritation; stomach discomfort	Water additive used to control microbes	MRDLG=4 ¹
Chlorine dioxide (as ClO ₂)	MRDL=0.81	Anemia; infants, young children, and fetuses of pregnant women: nervous system effects	Water additive used to control microbes	MRDLG=0.8 ¹
	1.0	Anemia; infants, young children, and fetuses of pregnant women: nervous system effects	Byproduct of drinking water disinfection	0.8
Chlorobenzene	0.1	Liver or kidney problems	Discharge from chemical and agricultural chemical factories	0.1
ည် Chromium (total)	0.1	Allergic dermatitis	Discharge from steel and pulp mills; erosion of natural deposits	0.1
လို Copper	TT ⁵ ; Action Level=1.3	Short-term exposure: Gastrointestinal distress. Long- term exposure: Liver or kidney damage. People with Wilson's Disease should consult their personal doctor if the amount of copper in their water exceeds the action level	Corrosion of household plumbing systems; erosion of natural deposits	1.3
Cryptosporidium	Π7	Short-term exposure: Gastrointestinal illness (e.g., diarrhea, vomiting, cramps)	Human and animal fecal waste	zero
Cyanide (as free cyanide)	0.2	Nerve damage or thyroid problems	Discharge from steel/metal factories; discharge from plastic and fertilizer factories	0.2
() 2,4-D	0.07	Kidney, liver, or adrenal gland problems	Runoff from herbicide used on row crops	0.07
Dalapon	0.2	Minor kidney changes	Runoff from herbicide used on rights of way	0.2
1,2-Dibromo-3- chloropropane (DBCP)	0.0002	Reproductive difficulties; increased risk of cancer	Runoff/leaching from soil fumigant used on soybeans, cotton, pineapples, and orchards	zero
o-Dichlorobenzene	0.6	Liver, kidney, or circulatory system problems	Discharge from industrial chemical factories	0.6
p-Dichlorobenzene	0.075	Anemia; liver, kidney, or spleen damage; changes in blood	Discharge from industrial chemical factories	0.075
1,2-Dichloroethane	0.005	Increased risk of cancer	Discharge from industrial chemical factories	zero

LEGEND

L+ DISINFECTANT

MICROORGANISM

RADIONUCLIDES

National Primary Drinking Water Regulations

Contaminant	MCL or TT ¹ (mg/L) ²	Potential health effects from long-term ³ exposure above the MCL	Common sources of contaminant in drinking water	Public Health Goal (mg/L) ²
1,1-Dichloroethylene	0.007	Liver problems	Discharge from industrial chemical factories	0.007
cis-1,2- Dichloroethylene	0.07	Liver problems	Discharge from industrial chemical factories	0.07
trans-1,2, Dichloroethylene	0.1	Liver problems	Discharge from industrial chemical factories	0.1
Dichloromethane	0.005	Liver problems; increased risk of cancer	Discharge from industrial chemical factories	zero
1,2-Dichloropropane	0.005	Increased risk of cancer	Discharge from industrial chemical factories	zero
Di(2-ethylhexyl) adipate	0.4	Weight loss, liver problems, or possible reproductive difficulties	Discharge from chemical factories	0.4
Di(2-ethylhexyl) phthalate	0.006	Reproductive difficulties; liver problems; increased risk of cancer	Discharge from rubber and chemical factories	zero
Dinoseb	0.007	Reproductive difficulties	Runoff from herbicide used on soybeans and vegetables	0.007
Dioxin (2,3,7,8-TCDD)	0.00000003	Reproductive difficulties; increased risk of cancer	Emissions from waste incineration and other combustion; discharge from chemical factories	zero
Diquat	0.02	Cataracts	Runoff from herbicide use	0.02
Endothall	0.1	Stomach and intestinal problems	Runoff from herbicide use	0.1
Endrin	0.002	Liver problems	Residue of banned insecticide	0.002
Epichlorohydrin	TT ⁴	Increased cancer risk; stomach problems	Discharge from industrial chemical factories; an impurity of some water treatment chemicals	zero
Ethylbenzene	0.7	Liver or kidney problems	Discharge from petroleum refineries	0.7
Ethylene dibromide	0.00005	Problems with liver, stomach, reproductive system, or kidneys; increased risk of cancer	Discharge from petroleum refineries	zero
Fecal coliform and <i>E. coli</i>	MCL ⁶	Fecal coliforms and <i>E. coli</i> are bacteria whose presence indicates that the water may be contaminated with human or animal wastes. Microbes in these wastes may cause short term effects, such as diarrhea, cramps, nausea, headaches, or other symptoms. They may pose a special health risk for infants, young children, and people with severely compromised immune systems.	Human and animal fecal waste	zero ⁶

LEGEND

+ DISINFECTANT

MICROORGANISM

	Contaminant	MCL or TT ¹ (mg/L) ²	Potential health effects from long-term ³ exposure above the MCL	Common sources of contaminant in drinking water	Public Health Goal (mg/L)²
ిర్ధిం	Fluoride	4.0	Bone disease (pain and tenderness of the bones); children may get mottled teeth	Water additive which promotes strong teeth; erosion of natural deposits; discharge from fertilizer and aluminum factories	4.0
	Ciardia lamblia	TT7	Short-term exposure: Gastrointestinal illness (e.g., diarrhea, vomiting, cramps)	Human and animal fecal waste	zero
\bigcirc	Glyphosate	0.7	Kidney problems; reproductive difficulties	Runoff from herbicide use	0.7
A	Haloacetic acids (HAA5)	0.060	Increased risk of cancer	Byproduct of drinking water disinfection	n/aº
\bigcirc	Heptachlor	0.0004	Liver damage; increased risk of cancer	Residue of banned termiticide	zero
\bigcirc	Heptachlor epoxide	0.0002	Liver damage; increased risk of cancer	Breakdown of heptachlor	zero
	Heterotrophic plate count (HPC)	TT7	HPC has no health effects; it is an analytic method used to measure the variety of bacteria that are common in water. The lower the concentration of bacteria in drinking water, the better maintained the water system is.	HPC measures a range of bacteria that are naturally present in the environment	n/a
\bigcirc	Hexachlorobenzene	0.001	Liver or kidney problems; reproductive difficulties; increased risk of cancer	Discharge from metal refineries and agricultural chemical factories	zero
\bigcirc	Hexachloro- cyclopentadiene	0.05	Kidney or stomach problems	Discharge from chemical factories	0.05
ిర్ధిం	Lead	TT⁵; Action Level=0.015	Infants and children: Delays in physical or mental development; children could show slight deficits in attention span and learning abilities; Adults: Kidney problems; high blood pressure	Corrosion of household plumbing systems; erosion of natural deposits	zero
	Legionella	TT7	Legionnaire's Disease, a type of pneumonia	Found naturally in water; multiplies in heating systems	zero
\bigcirc	Lindane	0.0002	Liver or kidney problems	Runoff/leaching from insecticide used on cattle, lumber, and gardens	0.0002
ిర్తం	Mercury (inorganic)	0.002	Kidney damage	Erosion of natural deposits; discharge from refineries and factories; runoff from landfills and croplands	0.002
\bigcirc	Methoxychlor	0.04	Reproductive difficulties	Runoff/leaching from insecticide used on fruits, vegetables, alfalfa, and livestock	0.04
ංරිං	Nitrate (measured as Nitrogen)	10	Infants below the age of six months who drink water containing nitrate in excess of the MCL could become seriously ill and, if untreated, may die. Symptoms include shortness of breath and blue-baby syndrome.	Runoff from fertilizer use; leaching from septic tanks, sewage; erosion of natural deposits	10

DISINFECTANT

ঙ্গ

÷

MICROORGANISM

RADIONUCLIDES

National Primary Drinking Water Regulations

Contaminant	MCL or TT ¹ (mg/L) ²	Potential health effects from long-term ³ exposure above the MCL	Common sources of contaminant in drinking water	Public Health Goal (mg/L) ²
Nitrite (measured as Nitrogen)	1	Infants below the age of six months who drink water containing nitrite in excess of the MCL could become seriously ill and, if untreated, may die. Symptoms include shortness of breath and blue-baby syndrome.	Runoff from fertilizer use; leaching from septic tanks, sewage; erosion of natural deposits	1
Oxamyl (Vydate)	0.2	Slight nervous system effects	Runoff/leaching from insecticide used on apples, potatoes, and tomatoes	0.2
Pentachlorophenol	0.001	Liver or kidney problems; increased cancer risk	Discharge from wood-preserving factories	zero
Picloram	0.5	Liver problems	Herbicide runoff	0.5
Polychlorinated biphenyls (PCBs)	0.0005	Skin changes; thymus gland problems; immune deficiencies; reproductive or nervous system difficulties; increased risk of cancer	Runoff from landfills; discharge of waste chemicals	zero
Radium 226 and Radium 228 (combined)	5 pCi/L	Increased risk of cancer	Erosion of natural deposits	zero
炎 Selenium	0.05	Hair or fingernail loss; numbness in fingers or toes; circulatory problems	Discharge from petroleum and metal refineries; erosion of natural deposits; discharge from mines	0.05
Simazine	0.004	Problems with blood	Herbicide runoff	0.004
Styrene	0.1	Liver, kidney, or circulatory system problems	Discharge from rubber and plastic factories; leaching from landfills	0.1
Tetrachloroethylene	0.005	Liver problems; increased risk of cancer	Discharge from factories and dry cleaners	zero
ဆို Thallium	0.002	Hair loss; changes in blood; kidney, intestine, or liver problems	Leaching from ore-processing sites; discharge from electronics, glass, and drug factories	0.0005
Toluene	1	Nervous system, kidney, or liver problems	Discharge from petroleum factories	1
Total Coliforms	5.0 percent ⁸	Coliforms are bacteria that indicate that other, potentially harmful bacteria may be present. See fecal coliforms and <i>E. coli</i>	Naturally present in the environment	zero
Total Trihalomethanes (TTHMs)	0.080	Liver, kidney, or central nervous system problems; increased risk of cancer	Byproduct of drinking water disinfection	n/aº
Toxaphene	0.003	Kidney, liver, or thyroid problems; increased risk of cancer	Runoff/leaching from insecticide used on cotton and cattle	zero
2,4,5-TP (Silvex)	0.05	Liver problems	Residue of banned herbicide	0.05
1,2,4- Trichlorobenzene	0.07	Changes in adrenal glands	Discharge from textile finishing factories	0.07

LEGEND

+ DISINFECTANT

MICROORGANISM

National Primary Drinking Water Regulations

EPA 816-F-09-004 | MAY 2009

Contaminant	MCL or TT ¹ (mg/L) ²	Potential health effects from long-term ³ exposure above the MCL	Common sources of contaminant in drinking water	Public Health Goal (mg/L)²						
I,1,1- Trichloroethane	0.2	Liver, nervous system, or circulatory problems	Discharge from metal degreasing sites and other factories	0.2						
1,1,2- Trichloroethane	0.005	Liver, kidney, or immune system problems	Discharge from industrial chemical factories	0.003						
Trichloroethylene	0.005	Liver problems; increased risk of cancer	Discharge from metal degreasing sites and other factories	zero						
Turbidity	Π7	Turbidity is a measure of the cloudiness of water. It is used to indicate water quality and filtration effectiveness (e.g., whether disease- causing organisms are present). Higher turbidity levels are often associated with higher levels of disease-causing microorganisms such as viruses, parasites, and some bacteria. These organisms can cause short term symptoms such as nausea, cramps, diarrhea, and associated headaches.	Soil runoff	n/a						
Uranium	30µg/L	Increased risk of cancer, kidney toxicity	Erosion of natural deposits	zero						
Vinyl chloride	0.002	Increased risk of cancer	Leaching from PVC pipes; discharge from plastic factories	zero						
Viruses (enteric)	Π ⁷	Short-term exposure: Castrointestinal illness (e.g., diarrhea, vomiting, cramps)	Human and animal fecal waste	zero						
Xylenes (total)	10	Nervous system damage	Discharge from petroleum factories; discharge from chemical factories	10						
LEGEND DISINFECTANT DISINFECTION										

NOTES

1 Definitions

- Maximum Contaminant Level Goal (MCLG): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLCs allow for a margin of safety and are non-enforceable public health goals.
- Maximum Contaminant Level (MCL): The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to MCLGs as feasible using the best available treatment technology and taking cost into consideration. MCLs are enforceable standards.
- Maximum Residual Disinfectant Level Goal (MRDLG): The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.
- Maximum Residual Disinfectant Level (MRDL): The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.
- Treatment Technique (TT): A required process intended to reduce the level of a contaminant in drinking water.

2 Units are in milligrams per liter (mg/L) unless otherwise noted. Milligrams per liter are equivalent to parts per million (ppm).

- 3 Health effects are from long-term exposure unless specified as short-term exposure.
- 4 Each water system must certify annually, in writing, to the state (using third-party or manufacturers certification) that when it uses acrylamide and/or epichlorohydrin to treat water, the combination (or product) of dose and monomer level does not exceed the levels specified, as follows: Acrylamide = 0.05 percent dosed at 1 mg/L (or equivalent); Epichlorohydrin = 0.01 percent dosed at 20 mg/L (or equivalent).
- 5 Lead and copper are regulated by a Treatment Technique that requires systems to control the corrosiveness of their water. If more than 10 percent of tap water samples exceed the action level, water systems must take additional steps. For copper, the action level is 1.3 mg/L, and for lead is 0.015 mg/L.
- 6 A routine sample that is fecal coliform-positive or E. coli-positive triggers repeat samplesif any repeat sample is total coliform-positive, the system has an acute MCL violation. A routine sample that is total coliform-positive and fecal coliform-negative or E. colinegative triggers repeat samples--if any repeat sample is fecal coliform-positive or E. coli-positive, the system has an acute MCL violation. See also Total Coliforms.

7 EPA's surface water treatment rules require systems using surface water or ground water under the direct influence of surface water to (1) disinfect their water, and (2) filter their water or meet criteria for avoiding filtration so that the following contaminants are controlled at the following levels:

Cryptosporidium: 99 percent removal for systems that filter. Unfiltered systems are required to include Cryptosporidium in their existing watershed control provisions.

- Ciardia lamblia: 99.9 percent removal/inactivation
- Viruses: 99.9 percent removal/inactivation
- Legionella: No limit, but EPA believes that if Giardia and viruses are removed/ inactivated, according to the treatment techniques in the surface water treatment rule, Legionella will also be controlled.
- Turbidity: For systems that use conventional or direct filtration, at no time can turbidity (cloudiness of water) go higher than 1 nephelometric turbidity unit (NTU), and samples for turbidity must be less than or equal to 0.3 NTU in at least 95 percent of the samples in any month. Systems that use filtration other than the conventional or direct filtration must follow state limits, which must include turbidity at no time exceeding 5 NTU.
 HPC: No more than 500 bacterial colonies per milliliter
- Long Term 1 Enhanced Surface Water Treatment: Surface water systems or ground water systems under the direct influence of surface water serving fewer than 10,000 people must comply with the applicable Long Term 1 Enhanced Surface Water Treatment Rule provisions (e.g. turbidity standards, individual filter monitoring, *Cryptosporidium* removal requirements, updated watershed control requirements for unfiltered systems).
- Long Term 2 Enhanced Surface Water Treatment: This rule applies to all surface water systems or ground water systems under the direct influence of surface water. The rule targets additional *Cryptosporidium* treatment requirements for higher risk systems and includes provisions to reduce risks from uncovered finished water storages facilities and to ensure that the systems maintain microbial protection as they take steps to reduce the formation of disinfection byproducts. (Monitoring start dates are staggered by system size. The largest systems (serving at least 100,000 people) will begin monitoring in October 2006 and the smallest systems (serving fewer than 10,000 people) will not begin monitoring until October 2008. After completing monitoring and determining their treatment bin, systems generally have three years to comply with any additional treatment requirements.)
- Filter Backwash Recycling: The Filter Backwash Recycling Rule requires systems that recycle to return specific recycle flows through all processes of the system's existing conventional or direct filtration system or at an alternate location approved by the state
- 8 No more than 5.0 percent samples total coliform-positive in a month. (For water systems that collect fewer than 40 routine samples per month, no more than one sample can be total coliform-positive per month.) Every sample that has total coliform must be analyzed for either fecal coliforms or E. coli. If two consecutive TC-positive samples, and one is also positive for E. coli or fecal coliforms, system has an acute MCL violation.
- 9 Although there is no collective MCLG for this contaminant group, there are individual MCLGs for some of the individual contaminants:
 Haloacetic acids: dichloroacetic acid (zero); trichloroacetic acid (0.3 mg/L)
 - Haloacetic acids: dichloroacetic acid (zero); trichloroacetic acid (0.3 mg// Trihalomethanes: bromodichloromethane (zero); bromoform (zero); dibromochloromethane (0.06 mg/L)

NATIONAL SECONDARY DRINKING WATER REGULATION

National Secondary Drinking Water Regulations are non-enforceable guidelines regarding contaminants that may cause cosmetic effects (such as skin or tooth discoloration) or aesthetic effects (such as taste, odor, or color) in drinking water. EPA recommends secondary standards to water systems but does not require systems to comply. However, some states may choose to adopt them as enforceable standards.

Contaminant	Secondary Maximum Contaminant Level
Aluminum	0.05 to 0.2 mg/L
Chloride	250 mg/L
Color	15 (color units)
Copper	1.0 mg/L
Corrosivity	Noncorrosive
Fluoride	2.0 mg/L
Foaming Agents	0.5 mg/L
Iron	0.3 mg/L
Manganese	0.05 mg/L
Odor	3 threshold odor number
рН	6.5-8.5
Silver	0.10 mg/L
Sulfate	250 mg/L
Total Dissolved Solids	500 mg/L
Zinc	5 mg/L

FOR MORE INFORMATION ON EPA'S SAFE DRINKING WATER:

visit: epa.gov/safewater

call: (800) 426-4791

ADDITIONAL INFORMATION:

To order additional posters or other ground water and drinking water publications, please contact the National Service Center for Environmental Publications at: **(800) 490-9198**, or email: **nscep@bps-Imit.com**.

Built Environment Testing

Report for:

Paul Boblak HOH Water Technology 500 S Vermont St. Palatine, IL 60067

Regarding:

Eurofins Built Environment Testing Central, LLC Project: 477639; CATCO CN1005393-O'Hare TERMINAL 5 EML ID: 3959032

Approved by:

Laboratory Manager Itzel Cuellar

Dates of Analysis: Legionella-CDC method: 03-05-2025

Service SOPs: Legionella-CDC method (EB-BT-S-1045) AIHA LAP, LLC accredited service, Lab ID #176641

All samples were received in acceptable condition unless noted in the Report Comments portion in the body of the report. Due to the nature of the analyses performed, field blank correction of results is not applied. The results relate only to the samples as received and tested.

Eurofins Built Environment Testing Central, LLC ("the Company"), a member of the Eurofins Built Environment Testing group of companies, shall have no liability to the client or the client's customer with respect to decisions or recommendations made, actions taken or courses of conduct implemented by either the client or the client's customer as a result of or based upon the Test Results. In no event shall the Company be liable to the client with respect to the Test Results except for the Company's own willful misconduct or gross negligence nor shall the Company be liable for incidental or consequential damages or lost profits or revenues to the fullest extent such liability may be disclaimed by law, even if the Company has been advised of the possibility of such damages, lost profits or lost revenues. In no event shall the Company's liability with respect to the Test Results exceed the amount paid to the Company by the client therefor.

Eurofins Built Environment Testing Central, LLC's LabServe® reporting system includes automated fail-safes to ensure that all AIHA LAP, LLC quality requirements are met and notifications are added to reports when any quality steps remain pending.

Eurofins Built Environment Testing Central, LLC

1815 West Diehl Road, Suite 800, Naperville, IL 60563 (866) 871-1984 www.eurofinsus.com/Built

Date of Sampling: 02-24-2025 Date of Receipt: 02-24-2025 Date of Report: 03-06-2025

Legionella Summary Sheet:

Sample ID	Location	Analysis Date	Volume Filtered (ml)	Detection Limit (cfu/ml)†	Analytical Sensitivity (cfu/ml)†	Total Legionella (cfu/ml)§	Legionella Detected
1	Potable Airfield M-2/3	03/05/2025	200	0.1	0.1	ND	ND
2	Potable Airfield M-4	03/05/2025	200	0.1	0.1	ND	ND
3	Potable Airfield M-5	03/05/2025	200	0.1	0.1	ND	ND
4	Potable Airfield M-6	03/05/2025	200	0.1	0.1	ND	ND
5	Potable Airfield M-7	03/05/2025	200	0.1	0.1	ND	ND
6	Potable Airfield M-8	03/05/2025	200	0.1	0.1	ND	ND
7	Potable Airfield M-9	03/05/2025	200	0.1	0.1	ND	ND
8	Potable Airfield M-10/11	03/05/2025	200	0.1	0.1	ND	ND
9	Potable Airfield M-14	03/05/2025	200	0.1	0.1	ND	ND
10	Potable Airfield M-15	03/05/2025	200	0.1	0.1	ND	ND
11	Potable Airfield M-16	03/05/2025	200	0.1	0.1	ND	ND
12	Potable Airfield M-17	03/05/2025	200	0.1	0.1	ND	ND
13	Potable Airfield M-18	03/05/2025	200	0.1	0.1	ND	ND
14	Potable Airfield M-19	03/05/2025	200	0.1	0.1	ND	ND
15	Potable Airfield M-20	03/05/2025	200	0.1	0.1	ND	ND
16	Potable Airfield M-21	03/05/2025	200	0.1	0.1	ND	ND
17	Potable Airfield M-24	03/05/2025	200	0.1	0.1	ND	ND
18	Potable Airfield M-25	03/05/2025	200	0.1	0.1	ND	ND
19	Potable Airfield M-26	03/05/2025	200	0.1	0.1	ND	ND
20	Potable Airfield M-27	03/05/2025	200	0.1	0.1	ND	ND
21	Potable Airfield M-28	03/05/2025	200	0.1	0.1	ND	ND
22	Potable Airfield M-29	03/05/2025	200	0.1	0.1	ND	ND
23	Potable Airfield M-30	03/05/2025	200	0.1	0.1	ND	ND
24	Potable Airfield M-32	03/05/2025	200	0.1	0.1	ND	ND
25	Potable Airfield M-33	03/05/2025	200	0.1	0.1	ND	ND

ND = None Detected

For water samples, the submitted volume affects dilution factor and limit of detection. A sample volume of at least 200ml is recommended for potable water samples for environments with high-risk populations and some other applications. Guidance on sampling, action thresholds and other relevant information can be found at (https://www.osha.gov) as well as other international, national and local agencies.

Identifiers listed without a data entry were not detected during the course of the analysis for the respective sample.

"Other Legionella species" include, but are not limited to, the following organisms: Legionella anisa, Legionella bozemanii, Legionella dumoffii, Legionella gormanii, Legionella jordanis, Legionellalongbeachae 1 and 2, and Legionella micdadei.

[†] The limit of detection is a raw count of 1 at the lowest dilution plated, represented here as a theoretical detection limit of 1 raw count/ reporting unit x the dilution factor on the lowest dilution plated. The analytical sensitivity is represented as being equal to 1 raw count/ reporting unit x the dilution factor, but on the on the lowest reportable (or countable) dilution plated. A reported value for cfu/unit value of "ND" signifies that the test results did not detect any colony forming units down to the limit of detection.

§ Total CFU/unit has been rounded to two significant figures to reflect analytical precision

Eurofins Built Environment Testing Central, LLC

1815 West Diehl Road, Suite 800, Naperville, IL 60563 (866) 871-1984 www.eurofinsus.com/Built

Date of Sampling: 02-24-2025 Date of Receipt: 02-24-2025 Date of Report: 03-06-2025

Legionella Summary Sheet:

Sample ID	Location	Analysis Date	Volume Filtered (ml)	Detection Limit (cfu/ml)†	Analytical Sensitivity (cfu/ml)†	Total Legionella (cfu/ml)§	Legionella Detected
26	Potable Airfield M-34	03/05/2025	200	0.1	0.1	ND	ND
27	Potable Airfield M-35	03/05/2025	200	0.1	0.1	ND	ND
28	Potable Airfield M-36	03/05/2025	200	0.1	0.1	ND	ND
29	Potable Airfield M-37	03/05/2025	200	0.1	0.1	ND	ND
30	Potable Airfield M-38	03/05/2025	200	0.1	0.1	ND	ND
31	Potable Airfield M-39	03/05/2025	200	0.1	0.1	ND	ND
32	Potable Airfield M-40	03/05/2025	200	0.1	0.1	ND	ND

ND = None Detected

For water samples, the submitted volume affects dilution factor and limit of detection. A sample volume of at least 200ml is recommended for potable water samples for environments with high-risk populations and some other applications. Guidance on sampling, action thresholds and other relevant information can be found at (https://www.osha.gov) as well as other international, national and local agencies.

Identifiers listed without a data entry were not detected during the course of the analysis for the respective sample.

"Other Legionella species" include, but are not limited to, the following organisms: *Legionella anisa, Legionella bozemanii, Legionella dumoffii, Legionella gormanii, Legionella jordanis, Legionellalongbeachae 1 and 2, and Legionella micdadei*.

[†] The limit of detection is a raw count of 1 at the lowest dilution plated, represented here as a theoretical detection limit of 1 raw count/ reporting unit x the dilution factor on the lowest dilution plated. The analytical sensitivity is represented as being equal to 1 raw count/ reporting unit x the dilution factor, but on the on the lowest reportable (or countable) dilution plated. A reported value for cfu/unit value of "ND" signifies that the test results did not detect any colony forming units down to the limit of detection.

§ Total CFU/unit has been rounded to two significant figures to reflect analytical precision

1815 West Diehl Road, Suite 800, Naperville, IL 60563 (866) 871-1984 www.eurofinsus.com/Built

Date of Sampling: 02-24-2025

Date of Receipt: 02-24-2025

Date of Report: 03-06-2025

Client: HOH Water Technology C/O: Paul Boblak Re: 477639; CATCO CN1005393-O'Hare TERMINAL 5

QUANTITATIVE LEGIONELLA REPORT

Sample ID:Location	1: Potable Airfield M-2/ 3		2: Potable Airfield M-4		Potable A	3: irfield M-5	4: Potable Airfield M-6	
Comments (see below)	No	one	No	one	None		None	
Lab ID-Version [‡] :	19665276-1		19665	19665277-1		19665278-1		5279-1
Analysis Date:	03/05	/2025	03/05	5/2025	03/05	5/2025	03/05	5/2025
Sample type	Water sample		Water	sample	Water	sample	Water	sample
Volume filtered (ml)	200		20	00	2	00	200	
Reporting Units	1	ml	1	1 ml		1 ml		ml
Detection Limit [†]	0	.1	0.1		0.1		0.1	
Analytical Sensitivity†	0	.1	0.1		0.1		0.1	
	raw ct.	cfu*/unit	raw ct.	cfu*/unit	raw ct.	cfu*/unit	raw ct.	cfu*/unit
L. pneumophila serotype 1								
L. pneumophila serotype 2-15								
Other Legionella species								
§TOTAL Legionella	ND	ND	ND	ND	ND	ND	ND	ND

*cfu = colony forming units ND = none detected **Comments:**

For water samples, the submitted volume affects dilution factor and limit of detection. A sample volume of at least 200ml is recommended for potable water samples for environments with high-risk populations and some other applications. Guidance on sampling, action thresholds and other relevant information can be found at (https://www.osha.gov) as well as other international, national and local agencies.

Identifiers listed without a count or data entry were not detected during the course of the analysis for the respective sample.

"Other Legionella species" include, but are not limited to, the following organisms: *Legionella anisa, Legionella bozemanii, Legionella dumoffii, Legionella gormanii, Legionella jordanis, Legionella longbeachae 1 and 2, and Legionella micdadei.*

[†] The limit of detection is a raw count of 1 at the lowest dilution plated, represented here as a theoretical detection limit of 1 raw count/ reporting unit x the dilution factor on the lowest dilution plated. The analytical sensitivity is represented as being equal to 1 raw count/ reporting unit x the dilution factor, but on the on the lowest reportable (or countable) dilution plated. A reported value for cfu/unit value of "ND" signifies that the test results did not detect any colony forming units down to the limit of detection.

§ Total CFU/unit has been rounded to two significant figures to reflect analytical precision.

1815 West Diehl Road, Suite 800, Naperville, IL 60563 (866) 871-1984 www.eurofinsus.com/Built

Date of Sampling: 02-24-2025

Date of Receipt: 02-24-2025

Date of Report: 03-06-2025

Client: HOH Water Technology C/O: Paul Boblak Re: 477639; CATCO CN1005393-O'Hare TERMINAL 5

QUANTITATIVE LEGIONELLA REPORT

Sample ID:Location	5	5:	6:		7:		8:	
-	Potable A	irfield M-7	Potable A	irfield M-8	Potable A	irfield M-9	Potable A	irfield M-
							10	/11
Comments (see below)	No	one	None		None		None	
Lab ID-Version [‡] :	19665280-1		19665	5281-1	19665	5282-1	19665	5283-1
Analysis Date:	03/05	03/05/2025		5/2025	03/05	/2025	03/05	/2025
Sample type	Water sample		Water	sample	Water	sample	Water	sample
Volume filtered (ml)	200		20	00	20	00	200	
Reporting Units	1	1 ml		1 ml		1 ml		ml
Detection Limit [†]	0).1	0.1		0.1		0.1	
Analytical Sensitivity†	0).1	0.1		0.1		0.1	
	raw ct.	cfu*/unit	raw ct.	cfu*/unit	raw ct.	cfu*/unit	raw ct.	cfu*/unit
L. pneumophila serotype 1								
L. pneumophila serotype 2-15								
Other Legionella species								
§TOTAL Legionella	ND	ND	ND	ND	ND	ND	ND	ND

*cfu = colony forming units ND = none detected **Comments:**

For water samples, the submitted volume affects dilution factor and limit of detection. A sample volume of at least 200ml is recommended for potable water samples for environments with high-risk populations and some other applications. Guidance on sampling, action thresholds and other relevant information can be found at (https://www.osha.gov) as well as other international, national and local agencies.

Identifiers listed without a count or data entry were not detected during the course of the analysis for the respective sample.

"Other Legionella species" include, but are not limited to, the following organisms: *Legionella anisa, Legionella bozemanii, Legionella dumoffii, Legionella gormanii, Legionella jordanis, Legionella longbeachae 1 and 2, and Legionella micdadei.*

[†] The limit of detection is a raw count of 1 at the lowest dilution plated, represented here as a theoretical detection limit of 1 raw count/ reporting unit x the dilution factor on the lowest dilution plated. The analytical sensitivity is represented as being equal to 1 raw count/ reporting unit x the dilution factor, but on the on the lowest reportable (or countable) dilution plated. A reported value for cfu/unit value of "ND" signifies that the test results did not detect any colony forming units down to the limit of detection.

§ Total CFU/unit has been rounded to two significant figures to reflect analytical precision.

QUANTITATIVE LEGIONELLA REPORT

Eurofins Built Environment Testing Central, LLC

1815 West Diehl Road, Suite 800, Naperville, IL 60563 (866) 871-1984 www.eurofinsus.com/Built

Date of Sampling: 02-24-2025 Date of Receipt: 02-24-2025 Date of Report: 03-06-2025

Sample ID:Location	Ģ):	1	0:	1	1:	1	2:
-	Potable A	irfield M-	Potable A	irfield M-	Potable A	irfield M-	Potable A	irfield M-
	1	4	1	5	1	6	1	7
Comments (see below)	No	one	No	one	None		None	
Lab ID-Version [‡] :	19665	5284-1	19665285-1		19665	19665286-1		5287-1
Analysis Date:	03/05/2025		03/05	5/2025	03/05	5/2025	03/05	/2025
Sample type	Water	sample	Water	sample	Water	Water sample		sample
Volume filtered (ml)	200		2	00	200		200	
Reporting Units	1 ml		1	ml	1 ml		1	ml
Detection Limit [†]	0).1	0.1		0.1		0.1	
Analytical Sensitivity†	0).1	0.1		0.1		0.1	
	raw ct.	cfu*/unit	raw ct.	cfu*/unit	raw ct.	cfu*/unit	raw ct.	cfu*/unit
L. pneumophila serotype 1								
L. pneumophila serotype 2-15								
Other Legionella species								
§TOTAL Legionella	ND	ND	ND	ND	ND	ND	ND	ND

*cfu = colony forming units ND = none detected **Comments:**

For water samples, the submitted volume affects dilution factor and limit of detection. A sample volume of at least 200ml is recommended for potable water samples for environments with high-risk populations and some other applications. Guidance on sampling, action thresholds and other relevant information can be found at (https://www.osha.gov) as well as other international, national and local agencies.

Identifiers listed without a count or data entry were not detected during the course of the analysis for the respective sample.

"Other Legionella species" include, but are not limited to, the following organisms: Legionella anisa, Legionella bozemanii, Legionella dumoffii, Legionella gormanii, Legionella jordanis, Legionella longbeachae 1 and 2, and Legionella micdadei.

[†] The limit of detection is a raw count of 1 at the lowest dilution plated, represented here as a theoretical detection limit of 1 raw count/ reporting unit x the dilution factor on the lowest dilution plated. The analytical sensitivity is represented as being equal to 1 raw count/ reporting unit x the dilution factor, but on the on the lowest reportable (or countable) dilution plated. A reported value for cfu/unit value of "ND" signifies that the test results did not detect any colony forming units down to the limit of detection.

§ Total CFU/unit has been rounded to two significant figures to reflect analytical precision.

QUANTITATIVE LEGIONELLA REPORT

1815 West Diehl Road, Suite 800, Naperville, IL 60563 (866) 871-1984 www.eurofinsus.com/Built

Date of Sampling: 02-24-2025 Date of Receipt: 02-24-2025 Date of Report: 03-06-2025

Sample ID:Location	1	3:	1	4:	1	5:	1	6:
•	Potable A	irfield M-	Potable A	irfield M-	Potable A	irfield M-	Potable Airfield M-	
	1	.8	1	9	2	20	2	21
Comments (see below)	No	one	No	one	None		None	
Lab ID-Version [‡] :	19665	5288-1	19665289-1		19665290-1		19665	5291-1
Analysis Date:	03/05/2025		03/05	5/2025	03/05	5/2025	03/05	5/2025
Sample type	Water sample		Water	sample	Water	sample	Water sample	
Volume filtered (ml)	200		2	00	200		200	
Reporting Units	1	ml	1	1 ml		1 ml		ml
Detection Limit [†]	C).1	0.1		0.1		0.1	
Analytical Sensitivity†	0).1	0.1		0.1		0.1	
	raw ct.	cfu*/unit	raw ct.	cfu*/unit	raw ct.	cfu*/unit	raw ct.	cfu*/unit
L. pneumophila serotype 1								
L. pneumophila serotype 2-15								
Other Legionella species								
§TOTAL Legionella	ND	ND	ND	ND	ND	ND	ND	ND

*cfu = colony forming units ND = none detected **Comments:**

For water samples, the submitted volume affects dilution factor and limit of detection. A sample volume of at least 200ml is recommended for potable water samples for environments with high-risk populations and some other applications. Guidance on sampling, action thresholds and other relevant information can be found at (https://www.osha.gov) as well as other international, national and local agencies.

Identifiers listed without a count or data entry were not detected during the course of the analysis for the respective sample.

"Other Legionella species" include, but are not limited to, the following organisms: Legionella anisa, Legionella bozemanii, Legionella dumoffii, Legionella gormanii, Legionella jordanis, Legionella longbeachae 1 and 2, and Legionella micdadei.

[†] The limit of detection is a raw count of 1 at the lowest dilution plated, represented here as a theoretical detection limit of 1 raw count/ reporting unit x the dilution factor on the lowest dilution plated. The analytical sensitivity is represented as being equal to 1 raw count/ reporting unit x the dilution factor, but on the on the lowest reportable (or countable) dilution plated. A reported value for cfu/unit value of "ND" signifies that the test results did not detect any colony forming units down to the limit of detection.

§ Total CFU/unit has been rounded to two significant figures to reflect analytical precision.

QUANTITATIVE LEGIONELLA REPORT

1815 West Diehl Road, Suite 800, Naperville, IL 60563 (866) 871-1984 www.eurofinsus.com/Built

Date of Sampling: 02-24-2025 Date of Receipt: 02-24-2025 Date of Report: 03-06-2025

Sample ID:Location	1	7:	1	8:	1	9:	20:		
L	Potable A	irfield M-	Potable A	irfield M-	Potable A	irfield M-	Potable A	irfield M-	
	2	4	2	25	2	26	2	27	
Comments (see below)	No	one	No	one	None		None		
Lab ID-Version [‡] :	19665	5292-1	19665293-1		19665294-1		19665	5295-1	
Analysis Date:	03/05/2025 03/05/2025		03/05	03/05/2025		5/2025			
Sample type	Water sample		Water	sample	Water	sample	Water sample		
Volume filtered (ml)	200		2	00	2	200		200	
Reporting Units	1	ml	1	1 ml		1 ml		ml	
Detection Limit [†]	0).1	0.1		0.1		0.1		
Analytical Sensitivity†	0).1	0.1		0.1		0.1		
	raw ct.	cfu*/unit	raw ct.	cfu*/unit	raw ct.	cfu*/unit	raw ct.	cfu*/unit	
L. pneumophila serotype 1									
L. pneumophila serotype 2-15									
Other Legionella species									
§TOTAL Legionella	ND	ND	ND	ND	ND	ND	ND	ND	

*cfu = colony forming units ND = none detected **Comments:**

For water samples, the submitted volume affects dilution factor and limit of detection. A sample volume of at least 200ml is recommended for potable water samples for environments with high-risk populations and some other applications. Guidance on sampling, action thresholds and other relevant information can be found at (https://www.osha.gov) as well as other international, national and local agencies.

Identifiers listed without a count or data entry were not detected during the course of the analysis for the respective sample.

"Other Legionella species" include, but are not limited to, the following organisms: Legionella anisa, Legionella bozemanii, Legionella dumoffii, Legionella gormanii, Legionella jordanis, Legionella longbeachae 1 and 2, and Legionella micdadei.

[†] The limit of detection is a raw count of 1 at the lowest dilution plated, represented here as a theoretical detection limit of 1 raw count/ reporting unit x the dilution factor on the lowest dilution plated. The analytical sensitivity is represented as being equal to 1 raw count/ reporting unit x the dilution factor, but on the on the lowest reportable (or countable) dilution plated. A reported value for cfu/unit value of "ND" signifies that the test results did not detect any colony forming units down to the limit of detection.

§ Total CFU/unit has been rounded to two significant figures to reflect analytical precision.

QUANTITATIVE LEGIONELLA REPORT

1815 West Diehl Road, Suite 800, Naperville, IL 60563 (866) 871-1984 www.eurofinsus.com/Built

Date of Sampling: 02-24-2025 Date of Receipt: 02-24-2025 Date of Report: 03-06-2025

Sample ID:Location	2	1:	2	2:	2	3:	2	4:	
*	Potable A	irfield M-	Potable A	irfield M-	Potable A	irfield M-	Potable A	irfield M-	
	2	.8	2	.9	3	80	3	32	
Comments (see below)	No	one	N	one	No	one	None		
Lab ID-Version [‡] :	19665	5296-1	19665297-1		19665298-1		19665	5299-1	
Analysis Date:	03/05/2025		03/05	5/2025	03/05	5/2025	03/05	5/2025	
Sample type	Water sample		Water	sample	Water	sample	Water sample		
Volume filtered (ml)	200		2	00	2	200		200	
Reporting Units	1	ml	1	1 ml		1 ml		ml	
Detection Limit [†]	C).1	0.1		0.1		0.1		
Analytical Sensitivity†	0).1	0.1		0.1		0.1		
	raw ct.	cfu*/unit	raw ct.	cfu*/unit	raw ct.	cfu*/unit	raw ct.	cfu*/unit	
L. pneumophila serotype 1									
L. pneumophila serotype 2-15									
Other Legionella species									
§TOTAL Legionella	ND	ND	ND	ND	ND	ND	ND	ND	

*cfu = colony forming units ND = none detected **Comments:**

For water samples, the submitted volume affects dilution factor and limit of detection. A sample volume of at least 200ml is recommended for potable water samples for environments with high-risk populations and some other applications. Guidance on sampling, action thresholds and other relevant information can be found at (https://www.osha.gov) as well as other international, national and local agencies.

Identifiers listed without a count or data entry were not detected during the course of the analysis for the respective sample.

"Other Legionella species" include, but are not limited to, the following organisms: Legionella anisa, Legionella bozemanii, Legionella dumoffii, Legionella gormanii, Legionella jordanis, Legionella longbeachae 1 and 2, and Legionella micdadei.

[†] The limit of detection is a raw count of 1 at the lowest dilution plated, represented here as a theoretical detection limit of 1 raw count/ reporting unit x the dilution factor on the lowest dilution plated. The analytical sensitivity is represented as being equal to 1 raw count/ reporting unit x the dilution factor, but on the on the lowest reportable (or countable) dilution plated. A reported value for cfu/unit value of "ND" signifies that the test results did not detect any colony forming units down to the limit of detection.

§ Total CFU/unit has been rounded to two significant figures to reflect analytical precision.

QUANTITATIVE *LEGIONELLA* **REPORT**

1815 West Diehl Road, Suite 800, Naperville, IL 60563 (866) 871-1984 www.eurofinsus.com/Built

Date of Sampling: 02-24-2025 Date of Receipt: 02-24-2025 Date of Report: 03-06-2025

Sample ID:Location	2	5:	2	6:	2	7:	2	8:	
_	Potable A	irfield M-	Potable A	Airfield M-	Potable A	Airfield M-	Potable A	Airfield M-	
	3	3	3	34	3	85	3	86	
Comments (see below)	No	one	N	one	None		None		
Lab ID-Version [‡] :	19665	5300-1	19665301-1		19665302-1		19665303-1		
Analysis Date:	03/05	5/2025	03/05	5/2025	03/05/2025		03/05/2025		
Sample type	Water	sample	Water	sample	Water	sample	Water samp		
Volume filtered (ml)	200		2	00	2	200		200	
Reporting Units	1 ml		1	ml	1	1 ml		ml	
Detection Limit ⁺	0).1	0.1		0.1		0.1		
Analytical Sensitivity†	0).1	0.1		0.1		0.1		
	raw ct.	cfu*/unit	raw ct.	cfu*/unit	raw ct.	cfu*/unit	raw ct.	cfu*/unit	
L. pneumophila serotype 1									
L. pneumophila serotype 2-15									
Other Legionella species									
§TOTAL Legionella	ND	ND	ND	ND	ND	ND	ND	ND	
§TOTAL Legionella	ND	ND	ND	ND	ND	ND	ND	ND	

*cfu = colony forming units ND = none detected **Comments:**

For water samples, the submitted volume affects dilution factor and limit of detection. A sample volume of at least 200ml is recommended for potable water samples for environments with high-risk populations and some other applications. Guidance on sampling, action thresholds and other relevant information can be found at (https://www.osha.gov) as well as other international, national and local agencies.

Identifiers listed without a count or data entry were not detected during the course of the analysis for the respective sample.

"Other Legionella species" include, but are not limited to, the following organisms: Legionella anisa, Legionella bozemanii, Legionella dumoffii, Legionella gormanii, Legionella jordanis, Legionella longbeachae 1 and 2, and Legionella micdadei.

[†] The limit of detection is a raw count of 1 at the lowest dilution plated, represented here as a theoretical detection limit of 1 raw count/ reporting unit x the dilution factor on the lowest dilution plated. The analytical sensitivity is represented as being equal to 1 raw count/ reporting unit x the dilution factor, but on the on the lowest reportable (or countable) dilution plated. A reported value for cfu/unit value of "ND" signifies that the test results did not detect any colony forming units down to the limit of detection.

§ Total CFU/unit has been rounded to two significant figures to reflect analytical precision.

QUANTITATIVE LEGIONELLA REPORT

1815 West Diehl Road, Suite 800, Naperville, IL 60563 (866) 871-1984 www.eurofinsus.com/Built

Date of Sampling: 02-24-2025 Date of Receipt: 02-24-2025 Date of Report: 03-06-2025

		_						
Sample ID:Location	2	9:	3	0:	3	1:	3	2:
-	Potable A	Airfield M-	Potable A	Airfield M-	Potable A	irfield M-	Potable A	Airfield M-
	3	37	3	38	3	39	4	10
Comments (see below)	No	one	N	one	None		None	
Lab ID-Version [‡] :	19665	5304-1	19665305-1		19665306-1		19665	5307-1
Analysis Date:	03/05	03/05/2025 03/05/2025 03/05/2025		03/05	5/2025			
Sample type	Water sample		Water	sample	Water	Water sample		sample
Volume filtered (ml)	200		2	00	200		200	
Reporting Units	1 ml		1	ml	1	1 ml		ml
Detection Limit ⁺	().1	0.1		0.1		().1
Analytical Sensitivity [†]	0).1	(0.1		0.1).1
	raw ct.	cfu*/unit	raw ct.	cfu*/unit	raw ct.	cfu*/unit	raw ct.	cfu*/unit
L. pneumophila serotype 1								
L. pneumophila serotype 2-15								
Other Legionella species								
§TOTAL Legionella	ND	ND	ND	ND	ND	ND	ND	ND
§TOTAL Legionella	ND	ND	ND	ND	ND	ND	ND	ND

*cfu = colony forming units ND = none detected **Comments:**

For water samples, the submitted volume affects dilution factor and limit of detection. A sample volume of at least 200ml is recommended for potable water samples for environments with high-risk populations and some other applications. Guidance on sampling, action thresholds and other relevant information can be found at (https://www.osha.gov) as well as other international, national and local agencies.

Identifiers listed without a count or data entry were not detected during the course of the analysis for the respective sample.

"Other Legionella species" include, but are not limited to, the following organisms: Legionella anisa, Legionella bozemanii, Legionella dumoffii, Legionella gormanii, Legionella jordanis, Legionella longbeachae 1 and 2, and Legionella micdadei.

[†] The limit of detection is a raw count of 1 at the lowest dilution plated, represented here as a theoretical detection limit of 1 raw count/ reporting unit x the dilution factor on the lowest dilution plated. The analytical sensitivity is represented as being equal to 1 raw count/ reporting unit x the dilution factor, but on the on the lowest reportable (or countable) dilution plated. A reported value for cfu/unit value of "ND" signifies that the test results did not detect any colony forming units down to the limit of detection.

§ Total CFU/unit has been rounded to two significant figures to reflect analytical precision.

QUANTITATIVE LEGIONELLA REPORT PROJECT ANALYST AND SIGNATORY REPORT

Project Analyst

Analyst: Dhara Patel

Eurofins Built Environment Testing Central, LLC

1815 West Diehl Road, Suite 800, Naperville, IL 60563 (866) 871-1984 www.eurofinsus.com/Built

Date of Sampling: 02-24-2025 Date of Receipt: 02-24-2025 Date of Report: 03-06-2025

The test report shall not be reproduced except in full, without written approval of the laboratory. The report must not be used by the client to claim product certification, approval, or endorsement by AIHA LAP, LLC, or any agency of the federal government. The Company reserves the right to dispose of all samples after a period of thirty (30) days, according to all state and federal guidelines, unless otherwise specified.

‡ A "Version" indicated by -"x" after the Lab ID# with a value greater than 1 indicates a sample with amended data. The revision number is reflected by the value of "x".

Eurofins Built Environment Testing Central, LLC

EMLab ID: 3959032, Page 12 of 12